Monthly Archives: May 2018

You are browsing the site archives by month.

Socially acceptable collision avoidance

Haoan Wang, Antonio Tota, Bilin Aksun-Guvenc, Levent Guvenc Real time implementation of socially acceptable collision avoidance of a low speed autonomous shuttle using the elastic band method, Mechatronics, Volume 50, 2018, Pages 341-355, DOI: 10.1016/j.mechatronics.2017.11.009.

This paper presents the real time implementation of socially acceptable collision avoidance using the elastic band method for low speed autonomous shuttles operating in high pedestrian density environments. The modeling and validation of the research autonomous vehicle used in the experimental implementation is presented first, followed by the details of the Hardware-In-the-Loop connected and autonomous vehicle simulator used. The socially acceptable collision avoidance algorithm is formulated using the elastic band method as an online, local path modification algorithm. Parameter space based robust feedback plus feedforward steering controller design is used. Model-in-the-loop, Hardware-In-the-Loop and road testing in a proving ground are used to demonstrate the effectiveness of the real time implementation of the elastic band based socially acceptable collision avoidance method of this paper.

On the use of flipped classroom for control engineering classes and its problem with the required (longer) time for learning

Y. Kim and C. Ahn, Effect of Combined Use of Flipped Learning and Inquiry-Based Learning on a System Modeling and Control Course, IEEE Transactions on Education, vol. 61, no. 2, pp. 136-142, DOI: 10.1109/TE.2017.2774194.

Contribution: This paper illustrates how to design and implement curricula in terms of the combined use of flipped learning and inquiry-based learning in an engineering course. Background: Elementary courses in engineering schools are conventional and foundational, and involve a considerable amount of knowledge. Throughout such courses, students are also expected to develop insight, which cannot be obtained by only listening to instructors. Having relevant discussions is also difficult for most instructors. Intended Outcomes: The combined use of flipped learning and inquiry-based learning would be beneficial to broaden student achievement. Application Design: Based on an epistemological approach about knowledge and knowing, this paper applies the combined use of flipped learning and inquiry-based learning to enhance student knowledge and advance ways of thinking on a System Modeling and Control course. Findings: The extended learning time and the collective responsibility for learning are discussed as critical issues in applying the combined use of flipped learning and inquiry-based learning in an engineering school.

Omnidirectional localization

Milad Ramezani, Kourosh Khoshelham, Clive Fraser, Pose estimation by Omnidirectional Visual-Inertial Odometry,Robotics and Autonomous Systems,
Volume 105, 2018, Pages 26-37, DOI: 10.1016/j.robot.2018.03.007.

In this paper, a novel approach to ego-motion estimation is proposed based on visual and inertial sensors, named Omnidirectional Visual-Inertial Odometry (OVIO). The proposed approach combines omnidirectional visual features with inertial measurements within the Multi-State Constraint Kalman Filter (MSCKF). In contrast with other visual inertial odometry methods that use visual features captured by perspective cameras, the proposed approach utilizes spherical images obtained by an omnidirectional camera to obtain more accurate estimates of the position and orientation of the camera. Because the standard perspective model is unsuitable for omnidirectional cameras, a measurement model on a plane tangent to the unit sphere rather than on the image plane is defined. The key hypothesis of OVIO is that a wider field of view allows the incorporation of more visual features from the surrounding environment, thereby improving the accuracy and robustness of the ego-motion estimation. Moreover, by using an omnidirectional camera, a situation where there is not enough texture is less likely to arise. Experimental evaluation of OVIO using synthetic and real video sequences captured by a fish-eye camera in both indoor and outdoor environments shows the superior performance of the proposed OVIO as compared to the MSCKF using a perspective camera in both positioning and attitude estimation.

Dynamic and efficient occupancy mapping

Vitor Guizilini and Fabio Ramos, Towards real-time 3D continuous occupancy mapping using Hilbert maps, The International Journal of Robotics Research
Vol 37, Issue 6, pp. 566 – 584, DOI: 10.1177/0278364918771476.

The ability to model the surrounding space and determine which areas are occupied is of key importance in many robotic applications, ranging from grasping and manipulation to path planning and obstacle avoidance. Occupancy modeling is often hindered by several factors, such as: real-time constraints, that require quick updates and access to estimates; quality of available data, that may contain gaps and partial occlusions; and memory requirements, especially for large-scale environments. In this work we propose a novel framework that elegantly addresses all these issues, by producing an efficient non-stationary continuous occupancy function that can be efficiently queried at arbitrary resolutions. Furthermore, we introduce techniques that allow the learning of individual features for different areas of the input space, that are better able to model its contained information and promote a higher-level understanding of the observed scene. Experimental tests were conducted on both simulated and real large-scale datasets, showing how the proposed framework rivals current state-of-the-art techniques in terms of computational speed while achieving a substantial decrease (of orders of magnitude) in memory requirements and demonstrating better interpolative powers, that are able to smooth out sparse and noisy information.