Category Archives: Robot Task Planning

Sample-based approximation to POMDPs integrated with forward simulation for robot active exploration, with a nice related work about active exploration in robotics

Mikko Lauri, Risto Ritala, Planning for robotic exploration based on forward simulation, Robotics and Autonomous Systems, Volume 83, 2016, Pages 15-31, ISSN 0921-8890, DOI: 10.1016/j.robot.2016.06.008.

We address the problem of controlling a mobile robot to explore a partially known environment. The robot’s objective is the maximization of the amount of information collected about the environment. We formulate the problem as a partially observable Markov decision process (POMDP) with an information-theoretic objective function, and solve it applying forward simulation algorithms with an open-loop approximation. We present a new sample-based approximation for mutual information useful in mobile robotics. The approximation can be seamlessly integrated with forward simulation planning algorithms. We investigate the usefulness of POMDP based planning for exploration, and to alleviate some of its weaknesses propose a combination with frontier based exploration. Experimental results in simulated and real environments show that, depending on the environment, applying POMDP based planning for exploration can improve performance over frontier exploration.

Combining efficiently symbolic planning with geometric planning

Fabien Lagriffoul, Benjamin Andres (2016), Combining task and motion planning: A culprit detection problem , The International Journal of Robotics Research, Vol 35, Issue 8, pp. 890 – 927, DOI: 10.1177/0278364915619022.

Solving problems combining task and motion planning requires searching across a symbolic search space and a geometric search space. Because of the semantic gap between symbolic and geometric representations, symbolic sequences of actions are not guaranteed to be geometrically feasible. This compels us to search in the combined search space, in which frequent backtracks between symbolic and geometric levels make the search inefficient. We address this problem by guiding symbolic search with rich information extracted from the geometric level through culprit detection mechanisms.

Planning tasks in mobile robots with MDPs that maximize the probability of satisfying user’s requirements specified through temporal logics, with estimation of transition probabilities through simulation only when needed

Jing Wang, Xuchu Ding, Morteza Lahijanian, Ioannis Ch. Paschalidis, and Calin A. Belta, Temporal logic motion control using actor–critic methods, The International Journal of Robotics Research September 2015 34: 1329-1344, first published on May 26, 2015. DOI: 10.1177/0278364915581505.

This paper considers the problem of deploying a robot from a specification given as a temporal logic statement about some properties satisfied by the regions of a large, partitioned environment. We assume that the robot has noisy sensors and actuators and model its motion through the regions of the environment as a Markov decision process (MDP). The robot control problem becomes finding the control policy which maximizes the probability of satisfying the temporal logic task on the MDP. For a large environment, obtaining transition probabilities for each state–action pair, as well as solving the necessary optimization problem for the optimal policy, are computationally intensive. To address these issues, we propose an approximate dynamic programming framework based on a least-squares temporal difference learning method of the actor–critic type. This framework operates on sample paths of the robot and optimizes a randomized control policy with respect to a small set of parameters. The transition probabilities are obtained only when needed. Simulations confirm that convergence of the parameters translates to an approximately optimal policy.

Nice related work on efficient POMDPs and two novel approaches to reduce their computational cost

Grady, D.K.; Moll, M.; Kavraki, L.E., Extending the Applicability of POMDP Solutions to Robotic Tasks, in Robotics, IEEE Transactions on , vol.31, no.4, pp.948-961, Aug. 2015 DOI: 10.1109/TRO.2015.2441511

Partially observable Markov decision processes (POMDPs) are used in many robotic task classes from soccer to household chores. Determining an approximately optimal action policy for POMDPs is PSPACE-complete, and the exponential growth of computation time prohibits solving large tasks. This paper describes two techniques to extend the range of robotic tasks that can be solved using a POMDP. Our first technique reduces the motion constraints of a robot and, then, uses state-of-the-art robotic motion planning techniques to respect the true motion constraints at runtime. We then propose a novel task decomposition that can be applied to some indoor robotic tasks. This decomposition transforms a long time horizon task into a set of shorter tasks. We empirically demonstrate the performance gain provided by these two techniques through simulated execution in a variety of environments. Comparing a direct formulation of a POMDP to solving our proposed reductions, we conclude that the techniques proposed in this paper can provide significant enhancement to current POMDP solution techniques, extending the POMDP instances that can be solved to include large continuous-state robotic tasks.

A new approach to solve POMDP-like problems through gradient descent and optimal control

Vadim Indelman, Luca Carlone, Frank Dellaert, Planning in the continuous domain: A generalized belief space approach for autonomous navigation in unknown environments, The International Journal of Robotics Research, vol. 34 no. 7, pp. 849-882, DOI: 10.1177/0278364914561102.

We investigate the problem of planning under uncertainty, with application to mobile robotics. We propose a probabilistic framework in which the robot bases its decisions on the generalized belief, which is a probabilistic description of its own state and of external variables of interest. The approach naturally leads to a dual-layer architecture: an inner estimation layer, which performs inference to predict the outcome of possible decisions; and an outer decisional layer which is in charge of deciding the best action to undertake. Decision making is entrusted to a model predictive control (MPC) scheme. The formulation is valid for general cost functions and does not discretize the state or control space, enabling planning in continuous domain. Moreover, it allows to relax the assumption of maximum likelihood observations: predicted measurements are treated as random variables, and binary random variables are used to model the event that a measurement is actually taken by the robot. We successfully apply our approach to the problem of uncertainty-constrained exploration, in which the robot has to perform tasks in an unknown environment, while maintaining localization uncertainty within given bounds. We present an extensive numerical analysis of the proposed approach and compare it against related work. In practice, our planning approach produces smooth and natural trajectories and is able to impose soft upper bounds on the uncertainty. Finally, we exploit the results of this analysis to identify current limitations and show that the proposed framework can accommodate several desirable extensions.