Category Archives: Education

What students value the most in an engineering lab (and some related work on laboratory practices)

Nikolic, S.; Ritz, C.; Vial, P.J.; Ros, M.; Stirling, D., Decoding Student Satisfaction: How to Manage and Improve the Laboratory Experience, in Education, IEEE Transactions on , vol.58, no.3, pp.151-158, Aug. 2015, DOI: 10.1109/TE.2014.2346474

The laboratory plays an important role in teaching engineering skills. An Electrical Engineering department at an Australian University implemented a reform to monitor and improve student satisfaction with the teaching laboratories. A Laboratory Manager was employed to oversee the quality of 27 courses containing instructional laboratories. Student satisfaction surveys were carried out on all relevant laboratories every year, and the data were used for continuous improvement. This paper will investigate the reforms that were implemented and outline a number of the improvements made. It also examines the program’s overall impact on: (1) overall satisfaction; (2) laboratory notes; (3) learning experiences; (4) computer facilities; (5) engineering equipment; and (6) condition of the laboratory. Student satisfaction with the laboratories increased by 32% between 2007 and 2013. The results show that the laboratory notes (activity and clarity) and the quality of the equipment used are among the most influential factors on student satisfaction. In particular, it is important to have notes or resources that explain in some detail how to use and troubleshoot equipment and software used in the laboratory.

Demonstration that students benefit from using colors while teaching electrical circuit analysis

Reisslein, J.; Johnson, A.M.; Reisslein, M., (2015), Color Coding of Circuit Quantities in Introductory Circuit Analysis Instruction, Education, IEEE Transactions on , vol.58, no.1, pp.7,14, DOI: 10.1109/TE.2014.2312674

Learning the analysis of electrical circuits represented by circuit diagrams is often challenging for novice students. An open research question in electrical circuit analysis instruction is whether color coding of the mathematical symbols (variables) that denote electrical quantities can improve circuit analysis learning. The present study compared two groups of high school students undergoing their first introductory learning of electrical circuit analysis. One group learned with circuit variables in black font. The other group learned with colored circuit variables, with blue font indicating variables related to voltage, red font indicating those related to current, and black font indicating those related to resistance. The color group achieved significantly higher post-test scores, gave higher ratings for liking the instruction and finding it helpful, and had lower ratings of cognitive load than the black-font group. These results indicate that color coding of the notations for quantities in electrical circuit diagrams aids the circuit analysis learning of novice students.