Architecture Tutorial: Retrieve laser scans

From The BABEL Development Site
Revision as of 09:18, 23 July 2009 by Jlblanco (talk | contribs) (Calling getObservations)

Overview

Following the Robotic Architecture proposed here, laser scans from either a simulated or a real robot should be accessible from a single module, named BS_RangeSensors.

The interface of this module is described in this section and this tutorial explains how to write a client module to query the latest laser scans from BS_RangeSensors.


Notice that this tutorial only covers the specific case of implementing a module with the C/C++ language.



Steps

Calling getObservations

At the point in your module where you need to request the laser scans, the service "getObservations" from "BS_RangeSensors" must be invoked. This is the definition of that service, just to know how it looks like:

Tut-scans service.jpg


To call that service, you must use the aracne-atom "request-synchronous&blocking". It can be inserted in your code from the BABEL_MD menu. A dialog will appear asking you which module and service you want to call. Write this information by hand or by using the button "From ICE..." as in the image:

Tut-scans wizard1.jpg

Accept and a wizard will appear asking you for the arguments of the service. Fill it out as in the figure:

Tut-scans wizard2.jpg


Now, this aracne atom must have some preparatory C++ code before it, and some C++ code after it to process the results.

You can use the following fragments of code, self-explained in its comments. Pay attention to:

  • The label "YOUR CODE HERE" for the place where to process the laser scan.
  • The point "ARACNE_ATOM_HERE" at which the aracne atom "request-synchronous&blocking" must be inserted.

Also, note that the macro #JMS-INCLUDE()#, if not inserted through the BABEL menu will NOT automatically add the dependency to your module, so it is recommended to either add the dependency on "BS_RangeSensors::getObservations" manually (first BABEL_MD tab, "Deps" button) or to insert the JMS macro from the menu and fill the parameters by hand (see the correct order of the parameters in the code below).


<cpp> using namespace mrpt; using namespace mrpt::utils; using namespace mrpt::slam;

// Retrieve the latest laser scan // ----------------------------------------------------- BABEL::BS_RangeSensors::SeqOfBytes *SF; // The sequence of bytes sent by the server module BABEL::Boolean sensorError; // Sensor error? bool err_var; // BABEL communication error?

/** ARACNE_ATOM_HERE **/

// Error? Propagate it: if (err_var) { // process error }


CObservation2DRangeScanPtr laserScan; // A smart-pointer to the laser scan (read below)

if (!err_var && !sensorError) { try { // De-serialize the object: mrpt::utils::CSerializablePtr obj = SeqOfBytes2MRPTObject(SF);

// Assure it's a valid observation: ASSERT_(obj) ASSERT_( IS_CLASS(obj,CSensoryFrame) )

CSensoryFramePtr theSF = CSensoryFramePtr(obj);

laserScan = theSF->getObservationByClass<CObservation2DRangeScan>(); // Get the first scan, if any. } catch(std::exception &e) { // Process ERROR, message in e.what() } }

// Free memory of the Sequence if (!err_var) { delete SF; SF = NULL; }


// Now, we have the latest scan laser in the variable "laserScan", which // is a smart pointer to a mrpt::slam::CObservation2DRangeScan // ------------------------------------------------------------------------- if (laserScan) { // ******* YOUR CODE HERE ************** // Access to the object data members to get the scan data. // Refer to: http://babel.isa.uma.es/mrpt/reference/svn/classmrpt_1_1slam_1_1_c_observation2_d_range_scan.html // Examples: // Scan size: laserScan->scan.size() // Scan point[0]: laserScan->scan[0] // Scan point[0] is valid: laserScan->validRange[0]!=0 } else { // For some reason (comms error, hardware error, etc...) there is no laser scan. }

</cpp>

Auxiliary code

Add the following auxiliary function to your module "Auxiliary logic" section, since this function is used in the code above:

<cpp> // SeqOfBytes2MRPTObject: Convert a BABEL sequence of bytes into a MRPT object. // IMPORTANT: "T of seqofbytes" must be a POINTER to a BABEL sequence, not a reference to it. template <typename T> mrpt::utils::CSerializablePtr SeqOfBytes2MRPTObject(const T &seqofbytes) { if (seqofbytes->length()==0) return mrpt::utils::CSerializablePtr(); mrpt::utils::CMemoryStream memBlock;

	memBlock.assignMemoryNotOwn(&(*seqofbytes)[0], seqofbytes->length() );

return memBlock.ReadObject(); } </cpp>

Non-deportabilities of the module

If your module didn't use MRPT before adding these code fragments, it must be inserted by:

  • Selecting the tab "Non-deportabilities" in BABEL_MD.
  • Select "Execution".
  • Add "mrpt-core" from the list below.
  • Save the module.

You'll need MRPT installed as explained here.