The H Metalanguage and the H tools
Juan-Antonio Ferndndez-Madrigal, Cipriano Galindo Andrades, Ana Cruz Martin, Javier Gonzdles

Technical report (Draft), May 2007
System Engineering and Automation Dpt., University of Malaga (Spain)

Abstract.

This technical report (draft) describes in detail the H metalanguage and the H tools for programming heterogeneous applications
with distributed, concurrent, real-time, and fault-tolerance requirements. This is an evolution of our BABEL development system,
which in turn was an evolution of our NEXUS programming framework.

Introduction

The integration of heterogeneous software
applications, specially when they involve hardware
programming, may be obstructed due to
heterogeneity. This is specially important in areas
such as CIM or robotics, but also appears in other
programming environments (for example, the Web).
Heterogeneity appears in different forms. To begin
with, a wide variety of equipment can be foundha t
shop level of a factory: programmable controllers,
robots, AGVs, sensors and actuators, CNC
machinery, warehouses and material handling
systems, and so on. Communications may also
involve different kinds of networks with different
requirements. Most of the hardware elements in a
modern application must be programmed, either in a
commercial-off-the-shelf (COTS) solution or in a
more general purpose language (C, C++, Java...),
which adds even more heterogeneity. Moreover, the
programming skills of the staff involved in the
development of an application will change depending
on the complexity of their tasks.

In addition to the heterogeneity produced by the
diversity of components needed, the adaptation to a
changing global market unavoidably demands
flexibility. Changes will affect to the wide rangs#
heterogeneous elements enumerated previously, thus,
in order to keep a manageable system, they must be
treated in a simple and efficient fashion.

We claim that software is a good starting point to
cope with heterogeneity. Programming languages are
very close to the root of the problem and the it
of software makes it well situated to address @ F
example, a common programming paradigm that
could be used for all the equipment would reduce
heterogeneity and increase flexibility. However,
approaching heterogeneity by forcing the use of a
single software paradigm or language is difficat t
put in practice due to the need of all the
manufacturers to adhere to it. It seems more
appropriate to look for a (maybe simpler) solution
that is able to integrate different programming
approaches. This would produce better results ¢han
common paradigm when confronted to very different
needs and situations.

In this paper we follow this line of research and
propose a solution to heterogeneity and flexibility

from the language programming perspective, aimed to
adapt as best as possible to the integration of
heterogeneous components and to facilitate
reusability and extensibility, and thus, to address
appropriately the flexibility issue. Our approashan
evolution of a previous work on the same problem
[<ref>], with a completely new formalization and
features for fault-tolerance and communication
frameworks. It consists of a simple and well define
metalanguage, called H, for designing and
implementing distributed software modules (for
example, programs in charge of controlling
mechanisms) that can be connected through different
classes of networks. Each of these modules, in turn
can complete its functionality with the writing of
different programming languages (COTS, general
purpose, etc.) in order to adapt to each particular
device. The H metalanguage includes concurrence,
fault-tolerance and real-time features to spedifg t
different requirements of the application and the
devices that compose it.

Furthermore, we have provided H with a set of
tools that deal with heterogeneity from a wide
perspective that covers all the stages of the
development lifecycle of the application. In gemera
H and the H-tools enable two valuable features:
extensibility and validation/debugging mechanisms.
Extensibility allows the integration of any othezwm
elements that are not considered in the proposed
specification; this characteristic maintains both
heterogeneity and flexibility, while reduces the
software development costs. Validation offers the
chance to check the proper function of the system
prior to its deployment, while debugging is intedde
to obtain conclusions about execution performarice o
the system.

We have tested preliminary versions of the H and
the H-tools (BABEL and NEXUS) in our automation
research labs on robotic applications during thst la
ten years [<ref>]. In this paper we illustrate thew
formalization with a case of study of a CIM
application. The obtained results have been progpisi
in both cases, having reduced the cost of developme
substantially by increasing flexibility while comn
with heterogeneous devices with reduced effort.

The plan of the paper is as follows. In the next
section we introduce the precise definition of the
metalanguage and describe the H tools. The follgwin

section presents a case of study. Finally, we eitid w
the conclusions of the presented work, along with a
outline of some future work in this area.

The H Metalanguage and the H
Tools

In this section we describe our specification |zt
for the design and programming of heterogeneous
applications, called H (for “Heterogeneity”), arftbt
set of tools that produce, deploy, validate, andude
executable programs from those designs, This is a
formalization and extension (mainly with multiple
communication platforms and fault-tolerance
capabilities) of a previous work called BABEL
[<ref>]. H has been conceived for producing
heterogeneous codifications (even in different
programming languages) of distributed software with
real-time and fault-tolerance requirements. Sitde i
essentially a description language, a specification
written in H can be easily transformed into modern
markup languages such as XML [<ref>], which
provide good structure capabilities and a widely
available set of tools for edition and validation.

H has the following main features:

a) Heterogeneity enabledAt all the levels of
the design of the application (from the
structural specification of programs to the
deployment of the executable code), H
allows the designer to use very different
components, both hardware and software, in
an integration framework that can take
advantage of the best qualities of each one.
Heterogeneity is properly encapsulated and
managed, and the parts of the design that do
not depend on concrete components are
conveniently identified and isolated so they
can be reused to the maximum.

b) Distributed H is aimed to implement
distributed applications over heterogeneous
networks, possibly with fault-tolerance and
real-time requirements. Of course,
applications that run entirely on a single
machine are also possible.

c) Concurrent The main execution unit of an
application specified with H is the module,
which runs on a given computing platform
(computer, PLC, embedded processor, etc.).
Within the module, H enables the designer to
specify concurrent execution threads, and
can regulate concurrency at a fine
granularity level by setting appropriate
characteristics for the services of the module.
Also, it provides mechanisms for
synchronization and internal communication
of threads.

d) Real-time The design of the application can
include real-time requirements in the
execution time and in the communication
between modules. A relative, hierarchical
priority scheme is provided that can be
mapped both to non-(or soft) real-time
operating systems’ facilities and to hard real-
time platforms.

e) Fault-tolerant The modules of an
application have separated memory spaces
and execution processes, so a fault in one
should affect the minimum to others and to
the integrity of the whole application. In
addition, modules can be deployed with
several replicas of each one. Mechanisms for
supporting a variety of policies for
distributing the work between the replicas
and merging their computation results are
provided, including both passive and active
replication modalities [<ref>].

Extensible It is easy to enrich H with any
number of components not covered at this
time. Also, H has some object-oriented
characteristics, such as inheritance, which is
available for reducing the cost and time of
designing modules, and for improving
reusability. Future work is to be done on
including other object-oriented features such
as polymorphism.

g) Validation/debugging enabled All the
information that can be retrieved from the
application for validation is available from
its H specification, thus different validation
algorithms can be run on it prior to
execution. Also, the application can produce
logging results of its execution for off-line
analysis.

In H, an application is composed of a set of
modules (possibly distributed in a network), being
each module executed on a single computational
machine and providing a number of public services t
other modules. During the design with H, the
components of the application and its requirements
are separated conveniently into the heterogeneous
components and the portable ones. In the resti®f th
section we detail the different levels of the H
metalanguage, its syntax, and its typical use for
designing and implementing a CIM application.

The Portable Components

For improving the most the reusing of the work done
in a given application, and for enabling heteroggne
at the design level, the parts of the design thanhat
tightly linked to specific hardware/software
components (that is, thportable parts), are specified
separately from the rest. The main portable

Figure <>

Module [abstract] structural design <module name> [

Description: “ Description of the module

Author: “Author name”

[Data definitions
/list_of_HDL_defs/
End data definitions

Signal definitions
llist_of_signals_defs/
End signal definitions]
<service name>
Characteristics:
Priority:
Inputs:

Service

[

[
[

End service

llist_of_serv_chars/]
Iservice_prio_level/
/list_of_HDL_data/]
Outputs: /list_of HDL_data/]
Description: “ description of the service
<service hame>)+

{ Event handler <signal id>
Priority: /handler_prio_level/
Description: “ description of the handler

End event handler <signal id>}
Notification handler
Priority:
Description: “
End notification handler

{

<signal name>
/handler_prio_level/
description of the handler
<signal name>}

End module structural design <module name>

inherits from llist_of_ids/]

components in an H application are the modules.
They are Active Objects [<ref>] which contain an
internal status and provide some services and data
definitions to other modules. In H, modules are
specified at two separated levels: their structural
design and their codification design. The latten ca
include weak references to non-portable components.

Structural Design. The structural design of a module
covers its public definitions and services, and esom
characteristics that do not depend on any particula
software/hardware. Thus, the structural design is
completely portable and can be reused as much as
possible. Each structural design must follow the
syntax shown in fig. <>.

For improving the reuse of the structural designs,
H includes a multiple inheritance mechanism (the
inherits from keyword) that allows the
designer to easily create modifications of existing
designs, to combine several designs into a more
complex one, and to make schemes of designs not
intended for implementation (through the use of the
abstract keyword). If a structural design inherits
from another one, its definitions are always adied
the parent’s, except when they collide: in thatecas
they replace them completely.

Within a module’s structural design, services are
public functions offered to other modules (andhe t
module itself). A service is the minimal sequential
execution entity within a module. It can access the
internal status of its module as described in the

codification of modules, further on. It also caguest
other services and thus generate communications.

Services are of three types in Hgular, event
handlers andnotification handlersA regular service
is requested by others or started by its own module
when the module initiates (for example, a servae f
making a “homing” in a manipulator arm). An event
handler service is executed only when an
asynchronous event is sent by another service (for
example, an alarm). Finally, a notification handler
service is an event handler that only is visibléhimi
the module. All the services of a module can run
concurrently within their module, but some of them
can be set for blocking any other’'s execution. &abl
<> shows the characteristics that can be used for
achieving different behaviors.

Each service in a module can have a priority of
execution relative to the priorities of other seed of
its own module. This is part of the hierarchical
relative priority system of H. At run-time, the qurity
assigned to each module (relative to the other
modules’ priorities) serves as the base for the
priorities of its services. Services within a madate
divided into four priority categories: high
(prioritized), dynamic, numeric and low
(unprioritized) High priority services can pre-empt
the execution of any non-high services of the same
module. This is useful, for example, for assuringtt
a hardware monitoring algorithm never loses itsetim
requirements. Low priority services can be pre-
empted by any other service of the module. For

Table <>

Characteristic

Effect

Typical use

reentrant

A reentrant service can start its execution comaty
more than once and with other reentrant services,
without waiting for the termination of other reqtgedt
is not needed imonitor ~ services or
event/notification handlers, since they are always
reentrant (and cannot be set as non-reentrant).

In contrast, a non-reentrant service blocks theugien
of any other service in the module, except moniamic
event/notification handlers.

Reentrant services require an appropriate useanégh
resources, specially accesses to the internakstéthe
module. H provides suitable synchronization cortssru
for that purpose (see section <>).

-For improving the throughput of the modul
when more than one execution thread exis
or when the module can have multiple
clients.

]

monitor

A monitor service is in a sense private to the nmdu
since it cannot be requested: it is launched auioafly
when the module is launched, after the startugclegds
(see section <>). Once terminated, it does notmetny
data.

Event/natification handlers cannot be set as masito
since they are requested in a different fashion.

-For initiation and configuration of some
component (initiating certain hardware or
software driver, for example).

permanent [
[absolute]
/time_value/]

A permanent service does not ever terminate, thus i
cannot have input or output data. Once it is refgae®r
launched in the case of a monitor service) anidgis
terminates, it is initiated again, and this behavics
automatically repeated after each iteration. Ortigmv
the module is shut down, and before the preendigig |
starts (see section <>), the service is signatied t
terminate when the current iteration ends.

Event/natification handlers cannot be set as peemtan
since that would contradict their way of being resped.

If this characteristic is parameterized by a tirakig
(greater than zero), the service will initiate thext
iteration after the time indicated passes. If the
absolute keyword is used, the time indicated will
include the time already spent by the executidief
last iteration of the service.

-Usually, this characteristic is used togethe
with monitor for setting periodic tasks
(supervisory code, simulation, periodic eve
signaling, etc.).

-If the task is intended to start on demand &
not with the launching of the module, the
permanent characteristic should be applied
a non-monitor service.

-If the time value parameter is used with th
absolute keyword, the service will be
enabled as a hard real-time task with that
period.

nt

and

—

(0]

D

example, consider a service for displaying remote
information in a SCADA system. Dynamic priority
services run at the same priority that their caller
Finally, numeric prioritized services (only mongor
and event/natification handlers can be set that) way
are assigned a relative priority inside the pryorit
range associated to the module, which in turn will
depend on the priority bases associated to other
modules during deployment (see section <>).

All services in a module may have input and/or
output data that must be appropriately typed. Also,
the Data definitions section may include data
types that may define the module for other modules
and for itself. Thus, other modules in the same
application can use directly these data definitiaas
their own, just qualifying them with "' syntaxa |
order to keep the structural design of a module
completely portable and separated from
heterogeneous concerns, H uses a common and well-
defined definition language for specifying dataeyp
It is called HDL (for “Heterogeneous Data
Language), and it is simply a subset of the OMG's

IDL [<ref>] that includes only definition of typeand
constants (it does not consider exceptions, modules
interfaces, inheritance, etc.). This especification
language is the same for all the modules, independt
on
their implementation. However, when a codification
is written for a given module and a particular
codification language is chosen for its
implementation, the HDL can be restricted. Consider
for example a codification of a module that is
intended to be implemented in assembler or executed
in a PLCs. It is common in that case that no real
numbers or complex data types exist. If during the
generation of the implementation it is found that t
codification language restricts the HDL of its mbaju
a check is performed for assuring that all the sype
used in the codification satisfy the restrictions
imposed by the codification language, producing a
generation error if not.

Finally notice that the input or output data of
services may include explicit information about the
semantics of the data (namely, range and units, as

shown in fig. <>). We have found this feature most
useful for facilitating the reuse of modules by
different programmers at different moments.

Codification Design. Apart from the structural design
of a module, some codification (programming) of it
must be provided to construct an executable program
Fig. <> shows the syntax for codifications, which
follows an Active Object framework. A codification

referring to another codification via simple
inheritance (thereviews keyword). In case of
inheritance, the Startup logics of all the codificas

in the inheritance hierarchy are assumed to execute
downwards (first the most abstract), while the
Preending and Postending logics are assumed to be
executed upwards (first the most concrete). Service
logics can be set to execute in the most convenient
direction, or to substitute completely the codifica

is always associated to some structural desighjgha
to some module, either by linking it explicitly &
module name via thenplements keyword or by

of the parents if theeplace keyword is used.

Figure <>
Module codification design <codification name> [implements <module name> | reviews <codification
name>]
Description: “ Description of the codification "
Author: “Author name”

[Codification language: /codif_language/]
[Internal status
Data definitions (types, variables, or constants;aode allowed) for the internal status of the medwritten in the codification
language.
End internal status]

[Replication
This logic is called in passive replication onlyentever the leader replica has transmitted to tiis @s internal status. It is
conceived for updating other pieces of data apannfthe internal status, or to respond to errorghat replication.

[Deportabilization: Jlist_of_ids/]
End replication]
[Startup logic [, Timing /timing_range/]

Code that will be executed at the start of the nimdund before any service is available; writterthie codification language.

[Deportabilization: Jlist_of_ids/]
End startup logic]
[Preending logic [, Timing /timing_range/]

Code that will be executed when the module is islguttown but before all the running or pending $e#s have ended.

[Deportabilization: Jlist_of_ids/]
End preending logic]
[Postending logic [, Timing /timing_range/]

Code that will be executed when the module is isigutiown and all the running or pending serviceséanded.
[Deportabilization: Jlist_of_ids/]
End postending logic]
[Auxiliary logic
Diverse pieces of code (and only code, no data)dha be useful for several of the other logics. .

[Deportabilization: Jlist_of_ids/]
End auxiliary logic]
[Externals
[[Linkable: llist_of_paths/ 1|

[Processable: llist_of_paths/ 1
[Passive: /list_of_paths/ p] 1+

End externals]

(Service <service name> [[replace | upwards | downwards]]], timing /timing_range/]

Here comes the internal codification of the servigatten in the codification language. Possiblyeedted concurrently with
other services’ logics (depending on the servicrafcteristics).

[Replication:
This logic only can be used in active replicatitirwill be called only on one replica (the lastftnish the request) after all the
existing replicas of the module finish a requestliés service, and will have as parameters theeamput and output parameters
as the service.
This logic is in charge of retrieving the resytt®duced by all the replica requests and produ@ngnique result through some
merging policy or algorithm.

The output parameters corresponding to each replitiebe accessable through an array-like constioictof the codification

language, indexed by the order of the replica.

If this logic is not included and active replicatids selected, the results returned by the setaieghe ones of the last replica

(the others are discarded).

]
[Deportabilization: Jlist_of_ids/]
End service <service hame>)+

{ Event handler <signal id>

Here comes the internal codification of the eventdier, written in the codification language. ltiMie executed concurrently

with other services’ logics.

In case of active replication, all the handlerslwié called in all the replicas, but no special ead needed to retrieve a commohn

result since handlers do not return anything.
[Deportabilization: Jlist_of_ids/]
End event handler <signal id>}

{ Notification handler <signal name>

Here comes the internal codification of the notifion handler, written in the codification languadewill be executed

concurrently with other services’ logics.

In case of active replication, all the handlerslwié called in all the replicas, but no special ead needed to retrieve a commohn

result since handlers do not return anything.
End notification handler <signal name> }

End module codification design <codification name>

See in the figure how the codification design
includes portions of code and data written in some
codification language. This is the main reason why
we call H a “metalanguage”: it allows the desigtwer
cope efficiently with the existing heterogeneity in
programming languages. All the so-called “logics”
are sequential routines, and their variables, eonst
or type definitions are considered under their scop
only. They have also access without restrictiortsiéo
internal status of the module. In addition, the
Externals section permits the designer to write
portions of code in external files for make the
codification clearer. These files can fit in three
categoriesLinkable for those that must be included in
some way in the source code of the program gertefiaten
the codification (for example, header files in ttese of
using C as the codification languagérocessable for
those files that must be processed in some way afte
including them in the generated program (for
example, for compiling or linking to the executgble
andPassive for those that simply are to be copied
in the destination directory of the generated paogr
(for example, for configuration files). The designe
should assure that the external files are completel
portable in order not to compromise the heteroggnei
management of H.

The codification of service logics must be able to
deal with input and output parameters whose types
are specified in the structural design of the medil
HDL. Therefore, when a codification design is used
for producing the source code of a executable
program written in the specified codification
language, some code must be included by the

generation tool (see section <>) to transform from
HDL into data types and operations in that language
and vice versa. This mapping is carried out difidye

for each codification language. It only dependshmn
codification language, even when a communication
platform such as OMG CORBA [<ref>] includes IDL
facilities. The general rule is that the input otput
parameters of services maintain their names (as
variables, typically) when mapped to the particular
language. If within a given logic some variableaof
type declared in thBata Definition section of

a module is needed, the way to refer to that type c
also be found in the mapping of HDL for the given
codification language. Finally, also remember that
given codification language may impose restrictions
on the HDL used for the structural design of the
module, as explained in section <>.

For keeping the codification design as portable as
possible, many constructs that would made the $ogic
to depend on some particular component (for
example, operating system facilities, user intévact
etc.) or on intrinsic features of H are dealt with
through the so-called “non-portable atoms”. A non-
portable atom is a macro with some parameters that
can be included at any point in a logic using aspe
syntax:

#_H-atom(<atom name>,...<parameters - either
constants or variables of the codification
language>...)_#

That syntax is intended to keep it distinguishable
from the sentences written in any codification
language. H provides the programmer with atoms for

dealing with many basic issues related to intrinsic
aspects of H and with our general platforms. A few
relevant ones are shown in fig. <>. Notice thatdee
of atoms that can be used in a codification may be
restricted by the codification language that issehmo

For example, those for dealing with multithreading
synchronization (semaphores) are not available in
cyclic executive platforms.

Table <>

Atom name

General Platform

Use

Request-synchronous-
static

communication

Issues a request for some service of a moduleifttiisdes requesting
services of the very module where it is used), ipggsput parameters
and retrieving output data if present. Errors dse aommunicated to the
caller in special return variables. The synchrormefzaviour implies that
the caller is blocked until the callee returns asveer (or an error). The
static behaviour implies that both the callee medurid service are know
before execution time.

If there are several communication platforms (smtien <>) available for|
issuing the request, they are used sequentialliyand of them
successfully sends and receives the informationgtbm does not allow
the programmer to specify one platform to use).

Also, real-time requirements can be included inatwm for specifying
the minimum and maximum times allowed in the regjussd also to set g
timeout. If the timeout fires, the request is disieal (as any future
incoming answer).

In the case of the callee module being a repet{see section <>,
paragraph on implementation), this atom also caluée the repetition
identifier to refer to a particular copy of the tieation module.

In the case of the callee having several replioagaiilt-tolerance
purposes (see section <>, implementation), theastquill be issued to al
of them; in the case of active replication, thell aoordinate to send a
single result.

Request-synchronous-

communication

The same but with a dynamic behaviour: both theeeahodule and

dynamic service can be set up at execution time.
Both issue asynchronously a signal to some moddiih can be set
dynamically at execution time or as a constantesigh time.
Due to their asynchronous nature, these atoms talloa the
Send-event programmer to specify real-time requirements.

Send-notification

communication

Events have input parameters, so this can be sadjaneral
asynchronous communication method. No response&wed by the
caller or guarantee that the callee has caughevhat.

Notifications are intended only for internal evetitsthe same module as
the caller), so they do not carry the destinati@duaie information.

Number-repetitions

Name-repetition

(intrinsic)

If the codification is a repetition of a given mdeldsee section <>), thesg
atoms allow it to check out how many repetitionseaf its module and
also get there names, in order to construct dynasejeests which are les
tied to a particular application than static ones.

Real-time-suspend

Time-stamp

real-time

Perform an operating-system dependent suspensitbre tfiread that
executes that logic during a given time, or readdirrent time,
respectively. The latter provides a global timargd and synchronized
through all the computing machines of the applaraif a real-time
platform with that capability is used. Otherwidepriovides a local
measure of time.

User-log

real-time

Records a time-stamped user log that can be exdmififiéine if the
codification has activated its logging option (seetion <>).

Critical-zone-create

Critical-zone-enter

Critical-zone-leave

execution /
hardware

These atoms allow the programmer to synchronizéipheliconcurrent
threads (that is, reentrant services as well astoroservices and
event/notification handlers) for accessing shaesturces, mainly the
internal status of the module. They follow the slasemaphore
paradigm.

They may include timeout parameters for real-tiraeds.

Drop-replica

=—h

a

ult-tolerance

Drops the current codification as a replica, botpassive and active
replication scenarios, even when it is the onlyicapcurrently up (in that
case the module will cease to respond). It is ikéeinfor reacting to
situations where a given replica is not able tctioore working correctly.

It is remarkable that all the logics of a codifiocat
include an optional section called
Deportabilization If a logic needs some
software or hardware component not covered by the
non-portable atoms (for example, a software library
for mathematical processing or a data acquisition
card), that section encourages the designer to ihake
explicit, and so, provides a clean and effectivy ofa
including software and hardware heterogeneity at th
codification level.

Codification design also permits to specify real-
time requirements (through th€&iming keyword),
mainly for validation purposes.

The Non-Portable Components

Both the structural design and the codificationigles

of modules explained in the previous section are
mostly portable. In a heterogeneous application,
however, it is common to have a number of
dependencies that cannot be avoided, and in fact,
must be exploited. We have already seen that in the
codification design weak dependencies can appear
explicitly through the Deportabilization

section. In order to use correctly that feature,rtbhn-
portable components must be previously defined. In
our framework this is enabled through General and
Particular Platforms. General Platforms serve to
classify the non-portable support necessities ef th
application: hardware, execution, communications,
etc., and allow us to classify both commercial and
non-commercial off-the-shelf solutions. Particular
platforms are instances of general platforms (for
example, a given operating system or a concrete
processing hardware). Currently, H recognizes the
following general platforms:

a) Hardware platformgHP). A HP represents a
set of hardware devices needed for the
physical execution of the application, which
includes at least one processor unit and
shares a motherboardhis kind of platform
can group together: CPU(s), motherboard
devices (hard disk, sound card, graphic card,
real-time clocks, etc.), plugged-in devices
(acquisition boards, automation interfaces,
network interfaces, etc.), and peripherals
(monitor, printer, external storage devices,
etc.).

b) Execution platformgEP). An EP represents
the basic software execution environment of
the application. This includes: operating
systems, virtual machines, software libraries
and execution libraries (e.g., interfaces with
hardware devices).

¢) Communication platforms(CP). A CP
comprehends the software needed for
communicating the modules of a distributed

1 1n a microcontroller, the “motherboard” typicallydludes just the
CPU, main memory, and /O facilities.

application. Its particular platforms can
provide from simple protocol support (peer-
to-peer, TCP/IP) to more abstract object
distribution (like CORBA [22]), even a
monolithic scheme (that is, no network).

d) Real-time platformgRTP). A RTP provides
real-time facilities in software form: real-
time scheduling, time measurement,
synchronization, etc. It can also provide
clock synchronization mechanisms for
giving to the designer of the application a
common time measurement in all the
computing machines.

e) Fault-tolerance platforms(FTP). A FTP
provides software fault-tolerance facilities
(for example, active replication [<ref>]). In
H there is a general support for including the
facilities provided by these platforms.

Fig. <> shows the syntax for defining particular
platforms. If a codification design refers to some
particular platform in one of its
Deportabilization sections, and that platform
is not defined in any such file, no applicationtthses
that module can be constructed.

Figure <>

Particular /general_platform/
<platform name>

platform

Description: “
platform

Description of the

End particular platform <platform name>

Communication platforms have some special
issues that we should remark. Firstly, an appboati
can use more than one communication platform for
issuing service requests and signals between mmdule
A module’s codification that is set to run on aegiv
execution/hardware platform will have access to the
communication platforms declared to be supported by
that execution/hardware (see section <> for a deepe
explanation on how to specify these support reiatio
between platforms). This means that the codificatio
is automatically provided with as many message-
reception loops as communication platforms has
available, all running concurrently and serving
requests and signals to the module. Also, when a
codification issues a service request or a sigial,
must choose a communication platform if more than
one is present. In that case, H only guarantessoe
the request through the first platform that is dole
finish it correctly. If some platform fails, anothene
(without any predefined ordering) is selected dmal t
request repeated. If no platform succeeds, an &ror
returned.

A second issue with communication platforms
comes from the fact that a communication link can b
mixed (for example, by using a gateway that conveys
data from a network of one type to a different one,
like in the example of section <>). Since H is only

intended to use communication layers above the
transportation one, and the transportation layer ca
hide the link details effectively, there is no gesh in
mixing links in a network for the design of the
application. The designer just has to include the
communication platforms corresponding to both ends
of the link in the computational machines where the
modules’ codifications are going to be deployed.

A third issue with these platforms is that many of
them require that the modules are registered inesom
directory service (the Name Service in CORBA, for
example) in order to be visible to others. In Hstts
guaranteed to be done dynamically, that is, eawh ti
a service or event request is initiated, the progra
will check if a reference to the destination mochdes
been previously obtained through that directory
service; if not, the reference will be get at thate,
otherwise the previous reference will be used.
Therefore, possible dead-locks in retrieving these
references (for example a cyclic situation where a
module is going to request services from another on
which in turn will request services from it) are
avoided. Appropriate mechanisms for deleting
references of modules that are not longer running
must be provided by the communication platform.

The Application
Once a repository of modules is available with both
structural and codification designs, whole

applications can be designed. From the structural
point of view, an application is just a set of miggu
that communicate to each other through service
requests and/or events. From the codification pafint
view, it is a set of relations between programs
(generated from codifications) and computational
machines (where those programs run). Since an
application can be specified at both levels, twadga
must be included in its design, as explained in the
next subsections.

Application. For constructing the structure of an
application, a list of modules (its structural degi
must be provided. This is done through the syntax
shown in fig. <>.

In this specification there is a special feature to
cope with the need of having more than one copy of
the same module in the application, for example,
when the application includes a number of identical
programmable devices. For activating that featilre,
repeated keyword can be used after a module
name, providing at least two identifiers. Each
identifier will refer to a copy of the module andush
be different from the others. Notice that this Geatis
independent on and has nothing to do with
replication, which is used for fault-tolerance poses
as explained further on.

Figure <>

Application <application name>
Description: “ Description of the
application
Author: “Author name”
Modules: /list_of_repmodules/
End application <application name>

Implementation. Each structural design of an
application must be accompanied by a specificaifon
its implementation in order to produce executable
programs. In fact, several implementations of the
same application can be provided, for example if
there are changes in the distribution of the maule
among the computers, or in the hardware suppart, et

An implementation of an application is written
following the syntax shown in fig. <> (details dmet
syntax of some constructs can be found in Appendix
<>). The first thing to notice is that a number of
specific instances of particular platforms must be
provided. For example, consider an implementation
of a control application with a number of PLCs:
several instances of the controller platform must b
specified.

Figure <>

Implementation
<application name>

<implementation name> for

Description:
implementation”

“Description of the

Author: “Author name”
Platforms: llist_of_platform_instances/
Support: /list_of_supports/

[Fault-tolerance: llist_of_FTs/]

Deployment: /list_of_deployments/

End implementation <implementation name>

In the implementation design also appears a
Support section. This is the way of specifying the
support relations existing between particular
platforms (more exactly, between instances of
particular platforms). For example, a given compute
can provide support for a given operating system,
which in turn can provide support for a given
processing library. These relations form an acyclic
graph which allows us to validate if the applicatto
be implemented can rely on the appropriate
components to satisfy its requirements.

The optional Fault-tolerance section
allows the designer to activate fault-tolerance
mechanisms in the application through replication,
either active or passive for each module. In paldic
it associates an instance of a fault-toleranceqodat
platform (which must have appeared previously & th
Support section or be either thduilt-in

platform) to any module for which replication shaul
be activated. All the replicas of that module widle
that type of replication (active or passive) andtth
platform to coordinate their service requests and
internal status.

The Deployment section allows the designer to
distribute codifications of the modules among the
available execution/hardware platforms declared in
the Support section. There are two features that
must be contemplated: on the one hand the posgibili
of deploying a number of repetitions of a given
module which are distinguishable as different
modules by the identifiers previously declared Igwit
the repeated keyword) in the application file; on
the other hand the capacity of deploying different
replicas of a module for fault-tolerance purpodés.
has provision for the following cases:

a) A module is deployed as a single executable
program (no repetitions of the module and no
replicas). In that case, threpetition ...
of keyword must be omitted and there
should appear only one codification
corresponding to the module in the list of
deployments.

b) A module is deployed with replication (fault-
tolerance activated), but without repetitions (it
appears as only one module to the rest of the
application). In that case, thepetition

. of keyword must also be omitted, but a
number ofidentical codifications of the given
module should be declared in the list of
deployments, and all of them will be either
active or passive replications (according to the
Fault-tolerance section explained
before). In passive replication, theplica
number will define the order in which the
replicas will be selected for processing
requests (when the highest number ceases to
respond after the timeout given in the
Fault-tolerance section, the next one
will take its place; whenever the selected
replica produces the result, its internal status
will be replicated in all of the others; all the
replicas not receiving correctly that
communication will be deactivated
automatically). On the contrary, in active
replication, thereplica number will be
used to index the output data produced by
each replica in the code in charge of
merging/coordinating their results. In that case
the replica to produce the final result will be
the latest in finishing the request (no
communication is needed to replicate the
status since all the replicas process the same

data; however a broadcast mechanism is
needed to send the request to all of tliem)

¢) A module is to be deployed with repetitions
that appear as different modules for the rest of
the application, some of them also including
replication for fault-tolerance purposes. Then,
the repetition ... of keyword must be
added to all the codifications of the module.
Those repetitions that include replication will
appear as several codifications that share the
same repetition identifier. The codifications
that only appear with one repetition identifier
will not have fault-tolerance support.

Producing, Executing, Debugging, and
Maintaining Applications

Once the design and implementation of the
application is written, automatic tools that vatelghe
design and, if possible, construct the executable
programs are available.

For automatically generating the programs of the
application (that can be many if they are intentted
run on different machines over a network), we have
developed a software called H-apc, for
“Heterogeneous APplication Constructor”, that
interprets the files described in the previous
subsections and generates source code for the
specified codification languages, execution platier
(operating systems), and a number of compilers and
interpreters. In particular, it generates a seiafrce
code files and locates them in a separate diredtory
each codificationH-apc is strongly based on code
templates in order to be easily extended with new
languages, OSs, and compilers/interpreters. Cilyrent
we have a version of this tool integrated into susl
CASE application for designing modules and
codifications, called the BABEL Module Designer
[<ref>]. It provides support for codifications weh
in C, C++, JAVA, and for these execution platforms:
MS Windows NT+, LynxOS, and the JAVA VM.

For deploying and executing a given application,
once it has been constructed witH-apc and
compiled/linked if needed, we use another software,
called H-apx (for “Heterogeneous APlication
eXecutor”), that is able to launch the programs on
their respective computational machines from a
remote station, if it can, or locally, and collebgir
logging information when that option is activated
through the logging keyword in the list of
deployments of the implementation file. The list of
deployments also configures the relative priorités
the codifications (theriority keyword) and their
launching order (theorder keyword). Pauses

2 Notice that active replication is suitable for miuthat do not
request services from other modules (or from tedies), since
in other case all the replicas will issue the reugenerating a
not proper operation. For modules that requesticesy it is
more suitable to use passive replication instead.

before the execution of each deployed codification
can be set (thepause keyword). When a
codification produces an executable program, it may
need some command-line arguments to be sent. This
can also be achieved through tbtlearguments

option. All these parameters are currently entéred
visual application called the BABEL Execution
Manager [<ref>], that can be deployed on MS
Windows computers.

If logging has been activated for some codification
the results can be analyzed off-line through latapl
(“Heterogeneous Application Logger”), a software
that shows graphically the sequence of events that
have occurred during execution (a previous version
was the BABEL Debugger [<ref>]). This allows the
programmers to inspect possible real-time flaws or
bad ordering of requests, apart from user-defined
events that can be registered at any time. Thearlggg
time-stamps are global (synchronized between eall th
computing machines of the application) if real-time
platforms are available that provide such feature;
otherwise logs are time-stamped locally for each
codification.

Finally, all the designs produced with H can be
stored in our BABEL web site ([<ref>]) for
maintainance. The site includes multi-user
priviledged accesses, version support, and some
validation tools. For example, it is possible to
examine a set of modules of an application to detec
loops in their service requests or the impossibibit
satisfying the real-time requirements specifiedhia
Timing keywords of codifications.

A Case of Study

Figure <> is a case of study of a simple industrél

in charge of classifying goods that are transpoored

a conveyor. The desired operation of the systeasis
follows: a good on the belt is transported until a
presence sensor detects it, which ftriggers the
detention of the belt and the recognition of thgcth
The recognition system (composed of two intelligent

cameras for improving recognition) captures an ienag
and classes the object according to its brightrigss.
result of the classification makes the routing
mechanism (a diverter on the belt) to head thecbbje
to the correct direction. In the following subsens
we describe in more detail the hardware and softwar
available in this plant and the design and
implementation of a control and SCADA application
using H and the H tools. We will show how, in spite
of the apparent simplicity of this plant, the
heterogeneity level can be quite high.

Hardware and Software Available

At the field level, the plant has the following sers,
actuators, and controllers:

a) A presence sensor (typically a photoelectric
sensor, such as [<ref>]) that gives an on/off
binary output under the presence or not of a
good on the belt.

b) A conveyor drive, composed of a gearmotor
and a starter (for example [<rf>]) attached to
the pulley of the conveyor belt. It has no
reverse operation and no speed regulation
(just stop/start through the starter).

c) A pneumatic diverter (such as [<ref>]) that
admits an on/off signal for selecting one out
of two lanes in the second segment of the
belt.

d) Two intelligent B/W cameras with
embedded processors with capturing and
basic image processing capabilities (for
example, [<ref>]). Each one can be triggered
to start the capture and provide two bits
output indicating the presence of a well
terminated part (00), a defective part (11), or
a not-known or

Figure <>

Intelligen
Cameras

« 9

Presence
Sensor

De

-

CADA PC

bl

mJ

Converyol

Drive

PLC

\‘ Diverter

Well terminated par
-

9/

Defective part
- .

Profibus
DF
Ethernel
gateway
A

SCADA
PC

< EtfeTe—

Presence
Sensol

Conveyor

B Divertel

error status (01/10). The use of two identical
cameras is for providing a consensus
between both results and so to diminish the
probability of a recognition failure. Only one
of them will provide the final result to the
controller.
e) A PLC controller. For this case study we will
consider an out-of-catalog device in order to
augment heterogeneity and also illustrate the
typical reuse of old components in many
manufacturing environments. In our example
it is the modular Simatic S5-100U controller
[<ref>].

At this level, the devices are connected through a
heterogeneous network:

- Non-programmable sensors and actuators
(presence, drive, diverter) are connected
through an AS-i bus to the PLC (in the case of
the Simatic S5, this must be done through an
AS-i module [<ref>]).

- The controller is connected to the cameras as a
master in a Profibus-DP bus [<ref>] (a CP
5431 module for this PLC is needed [<ref>]).
This hard real-time bus will also be used for
connecting the field to the SCADA system.
Profibus classifies the devices connected to it
as masters or slaves (there can be several
masters, with a maximum of 32 devices if no
repeater is used). Masters can initiate
communication, but slaves can also transfer
data in a peer-to-peer fashion.

A

Profibug
DF

R 23

gateway

Intelligent
Camerz #

Profibus
DF
R¢ 23!
gateway

Intelligent
Camerz #2

- The VS710 cameras chosen for this case of
study provide direct connection to Profibus-
DP, but for increasing heterogeneity, we will
consider their RS-232 connections instead. So,
we need a pair of Profibus-DP / RS-232
gateways (for instance, [<ref>]) that set the
cameras as slaves in Profibus.

The enterprise level will contain a number of
conventional PCs. One of them will include a
SCADA software. We will consider that all these PCs
share an Ethernet network, and the SCADA computer
will pass through to the field by means of a Etleérn
Profibus-DP gateway [<ref>], being seen as a master
from the Profibus perspective.

Concerning the software, there are
programmable devices in our example:

three

- Both intelligent cameras include an Intel 486
processor @ 100MHz [<ref>] with 16Mb of
main memory. They run MS-DOS 6.22
[<ref>]. The camera buffer can be dumped to
main memory through suitable calls to a
software library. The development is carried
out on a different computer (using Visual C++
6.0 [<ref>] if C or C++ languages are chosen)
and the binary files transferred to the
embedded processors via RS-232 or the other
available connections. Once the program is in
the camera, it operates autonomously.

- The PLC has a CPU with a well-defined
execution time for its instructions. It also
includes a ROM with a cyclic executive that
starts in each cycle by transferring an image of
all the inputs and outputs of the PLC to main

memory, follows by executing the program,
and ends by transferring back the input/output
data to the devices. The program can be
written in three modes. We are interested in
AWL [<ref>], which is a textual programming
language similar to assembly, with no real
number processing capabilities. The program
is developed in an external computer and
transferred to the PLC via a serial cable. Once
there, it can be stored in an EPROM. With
respect to the communication modules, the
AS-i module appears to the CPU as a set of
binary data in the input/output space, while the
Profibus-DP provides a number of predefined
functions that can be called for performing
basic SEND/RECEIVE operations.

- The PC in charge of running the SCADA
front-end will run a MS-Windows XP OS
[<ref>], which can be programmed in a variety
of languages. This computer will serve both as
a development computer (not only for their
own programs but also for compiling and
transferring programs to the PLC and the
cameras), and as an execution environment.
We will choose JAVA [<ref>] for
programming our front-end due to its
graphical capabilities and portability among
platforms. The Ethernet connection can be
accessed through socket interface [<ref>] and
a Profibus-DP library provided by the gateway
manufacturer.

Designing the Application with H

In the design of this application with the H langea
we can distinguish three different modules, intehde
for managing each of the programmable devices: a
PLC Control module, aSCADA Front-Endmodule
and anlnspectionmodule. The PLC Control module
will be in charge of properly managing the conveyor
actuators based on the readings of the proximity
sensor and the recognition performed by the cameras
The Inspection module will reside in the cameras an
provide object recognition facilities. The SCADA
Front-End module will continuously retrieve
information from the whole system to be graphically
shown in the operator console, and detect possible
failure situations. Figs. <> show the structural
designs for these modules. Notice the object-agbnt
inheritance for future reuse of the designs. Th€ PL
Control module has some hard-real time constraints
the form of a cyclic task in charge of sequencimg t
shop plant. Also notice that the SCADA Front-End
receives information from the plant asynchronously,
without hard time requirements (it also is ableatd

on the plant to stop or start its operation undssru
demand). No information depending on a given
hardware or software is needed, and thus the

portability and reusability of these structural idas
is maximum.

Figure <>
Module abstract structural design FieldDevice
Description : "An abstract module that

encapsulates a general field device"
Author : "The H Team"

Data definitions

enum DeviceStatus
{ok , stopped |, failure} ;

End data definitions

Service GetStatus
Characteristics . reentrant ;
Priority : dynamic
Outputs : DeviceStatus st ;
Description : "Return the current
status of the device"
End service GetStatus

End module structural design FieldDevice

Figure <>

Module abstract structural design
ControlDevice inherits from FieldDevice

Description : "An abstract module that
encapsulates a general control field device"

Author : "The H Team"

Data definitions

enum DeviceStatus
{ok , stopped |, failure} ;

End data definitions

Service NumberOfDevices
Characteristics . reentrant ;
Priority : dynamic
Outputs : long num ;
Description : "Return the number of
devices controlled by this"
End Service NumberOfDevices

Service GetStatusOfDevice

Characteristics . reentrant ;
Priority : dynamic
Inputs : long numdev ; //Index of

device to check, from 0
Outputs : bool invaliddev ,
FieldDevice :: DeviceStatus st ;
Description : "Return the current
status of the indicated device"
End service GetStatusOfDevice

Service GetStatusOfDevices

Characteristics . reentrant ;
Priority : dynamic
Outputs :

sequence <FieldDevice : DeviceStatus >;
Description : "Return the current

status of all the devices controlled by
this, including itself
at the end of the sequence"
End service GetStatusOfDevices

Service SuspendControl
Priority ~ : prioritized ;
Description : "Suspend the execution of
the system controlled by this"
End service SuspendControl

Service ResumeControl
Priority ~ : prioritized ;
Description : "Resume execution of the
system if it is in suspension”
End service ResumeControl

End module structural design FieldDevice

Figure <>

Module structural design PLCControl inherits
from ControlDevice

Description : "Control of the sensors and
actuators of a case of study shop floor
application"

Author : "The H Team"

Service MainControl
Characteristics : monitor , permanent
absolute 500 milliseconds
Priority ~ : prioritized
Description : "This service is a cyclic
hard-real time task in charge of checking
the status of the
presence sensor and stop/start the conveyor
drive

and the diverter as
necessary after consulting the Inspection
module"
End service MainControl

End module structural design FieldControl
Figure <>
Module structural design Inspection inherits

from FieldDevice

Description : "Inspection of parts to
decide if they are right or defective"

Author : "The H Team"

Data definitions

enum InspectionResults
{ok , defective , error}

End data definitions

Service Inspect
Priority : dynamic
Outputs : InspectionResults result ;
Description : "This service performs an
inspection of the part"
End service Inspect

End module structural design Inspection

Description : "Consult the current
status of the system and put it on the
graphical front-end"
End service RefreshDevicesStatus

Service RefreshStatistics
Priority : dynamic ;
Description : "Put on the graphical
interface up-to-date statistics on the
parts that the system has
processed"
End service RefreshStatistics

Service SuspendSystem
Priority ~ : prioritized ;
Description : "Stop the whole system
temporarily”
End service SuspendSystem

Service ResumeSystem
Priority ~ : prioritized ;
Description : "Resume the whole system
activity"
End service ResumeSystem

Event handler PartDetected
Priority : 10
Description : "Adds one to the correct
parts or to the defective parts, or increments
the number of failures (in
that case it also stops the system), depending
on the type of the part
detected”
End event handler PartDetected

End module structural design Inspection

Figure <>

Module structural design SCADAFrontEnd

Description : "Graphical Front-End for the
SCADA system"

Author : "The H Team"
Signal definitions

signal PartDetected
description . "Signalled when a new
part has arrived on the belt and
the recognition
system has decided of which type it is"
parameter :
Inspection :: InspectionResults newpartinsp ;
end signal PartDetected

End signal definitions

Service Graphicallnterface

Characteristics : monitor , permanent
Priority : unprioritized ;
Description : "This service is in

charge of creating and maintaining the"
graphical interface for
user interaction”
End service Graphicallnterface

Service RefreshDevicesStatus
Priority : dynamic ;

The next step is to design the codifications for
these structures. This is when heterogeneity meist b
dealt with for the first time. On the one hand,cfie
programming languages must be selected. We will
choose JAVA for the SCADA Front-End, C for the
embedded camera processors, and AWL for the
Simatic PLC. On the other hand, some information on
the particular platforms that are needed for exegut
the codifications may be included. Notice that
through the use of H-atoms, most of the
portability/heterogeneity parts of the codificationll
still remain portable. Figs. <> show some fragments
of the codifications for the three modules. The
Inspection module includes active replication for
merging the results of both cameras. The PLC
MainControl service is deportabilized by the CP 243
module (the one that provides access to the A% bu
from the PLC), since it is used to access fieldiasy
that do not contain modules. However, the CP 5431
needed in the PLC for communicating through the
Profibus does not deportabilize the codificatidnisi
used as a communication platform between
codifications, and thus, it could be substitutedha
future without compromising the logics of fig. <>.

Figure <>

Module codification design PLCControlS5 implements PLCControl
Description : "Codification of the PLC Control module for executi ng in a Simatic S5 PLC"
Author : "The H Team"
Caodification language : step - 5- awl

Internal status

H
DB2
KY =1 #state of the system 1 -> ok, O->failure, 2 -> stopped#
BE
End internal status
Startup logic // This logic will be dumped to the OB 21 block of the S5 by the H tools
H
SM1.0
SM11
RM2.0
RM21

=AO0.1 #start moving the conveyor#
End startup logic

Service MainControl

/I This logic will be dumped to OB 1, which is exec uted cyclically by the S5
H
CDB2
#calling the inspection service . Results are stored in two marks#
#_H at on(| nspection, I nspection,"M1.0,M1.1")_#
UM1.0
UuM11
=A 0.2 #it moves the diversion device to 1 if the resultis 11, or 0
otherwise#
o (
UM1.0
UNM1.1
)
o (
UNM1.1
UM1.0
) #result is 01 or 10, that is, a failure in the system#
TBI1
=AO0.1 #the conveyor is activated if system is ok#

#The rest of the code#
+}
Deportabilization . SimaticPLC // Since the codification cannot access the non-pro

devices without it
End service MainControl

/I The other services written here ...

grammable

End module codification design PLCControlS5

Figure <>

Module codification design VS710Cameralnspector implements Inspection
Description : "Codification of the inspection logic for the VS710 camera”

Author : "The H Team"

Caodification language : ansi -c
Service Inspect , timing 10 milliseconds ... 100 milliseconds
H

Il Accesses to the camera
/l Dump image into main memory
/I Run recognition process

Replication

H

int resl =result [O0]; //resultof the service as produced by the first r eplica

int res2 =result [1]; //the result produced by the second replica

if (result [O]==result [1])

result =result [O0]; // both replicas have returned the same
else
{
/I 1f one of the replicas does not work, take the o ther
if (result [O0]== Inspection :: error)
result =result [1];
else if (result [1]== Inspection : error)
result =result [O0];
else /I both replicas disagree; take the worst case
result =Inspection :: defective ;
}
+

End service MainControl

/I The other services written here

End module codification design VS710Cameralnspector

Figure <>

Module codification design JAVASCADAFrontEnd implements SCADAFrontEnd
Description : "Codification of the graphical front-end in JAVA wi th swing"

Author : "The H Team"

Internal status
H _
int num_malfunctions ;
int num_detected_parts ;
+}
end internal status
Startup logic
I _
num_malfunctions =0; num_classA =0;
num_classB =0;
_H atonm(Critical-zone-create, "1") _#
o _
end startup logic
Caodification language : java -2.0
/I The other services written here

Event handler PartDetected

/I a new part detected and potentially a stop
H
#_H at on(Request - synchronous-stati c, PLCContr ol , Get St at usOf Devi ce, " not or -
drive,error,result")_#

if (lerror)
t
if (result! =ok)
Hatonm(Critical-zone-enter,"1")_#
num_malfunctions ++;

Haton(Critical-zone-Ileave,"1")_#

else
{ # Haton(Critical-zone-enter,"1")_#
num_detected_parts ++;
Haton(Critical-zone-Ileave,"1")_#
}

/IRefresh graphical front-end...

End event handler

End module codification design JAVASCADAFrontEnd

Table <>

Particular Platform General Description
Platform

SimaticPLC Hardware The Simatic S5-100U (CPU 103) PLC basic hardwatkaperating system. Als
Platform the CP2433_ASi module for accessing the AS-i device

SimaticPLCTiming Real-Time Hardware and software support for the real-timéuiess of the simatic PLC.
platform

CP5431_Profibus CommunicationsSimatic module for communications through ProfilnR-
Platform

SimaticProfibus_Broadcast Fault-Tolerance A software library for performing broadcast opevat from the Simatic-Profibug
Platform side, needed in the active replication of the ligeht cameras.

VS710Camera Hardware The hardware of the VS710 intelligent camera, idiclg the processor, memory
Platform and internal connection to the CCD sensor.

MSDOS622 Execution The operating system for the MSFamera embedded processor, including th

[

Platform software libraries for accesing the camera
RS232_MSDOS622 Communication A software communication platform for issue senacel event requests throug
Platform an RS232 connection on a MS-DOS 6.22 OS.
PC Hardware The conventional PC in charge of the SCADA frontken
Platform
JAVA_VM Execution The JAVA Virtual Machine for executing the FrontdEn
Platform
EthernetProfibusGateway Comunication | Hardware and software platforms for providing supgar Profibus
Platform communications through Ethernet gateway.

In addition to the design of modules and
codifications, the particular platforms involved
in the application must be enumerated for an
implementation to be produced. Since the “.ppl”
files are really simple, we rather give a table
with the platforms of our example (table <>).

The application can now be designed, as
shown in fig. <>. A possible implementation is
shown in fig. <>.

Figure <>

Application CaseStudyApplication

Description "Design of the application
from a structural point of view"
Author @ "The H Team"

Modules : PLCControl
SCADAFrontEnd

, Inspection ,

End application CaseStudyApplication

Figure <>

Implementation Ourlmplementation for
CaseStudyApplication

Description "An implementation that uses
the codifications given previously"

Author : "The H Team"

Platforms

AnOIldS5 is SimaticPLC

S5Timing is SimaticPLCTiming ,
AProfibusModule is CP5431_Profibus
BuiltinBroadcast is

SimaticProfibus_Broadcast ,
Cameral, Camera2 are VS710Camera ,
CopylOfDOS, Copy20fDOS are MSDOS622

CRS232Libraryl, CRS232Library2 are
RS232_MSDOS622

EnterprisePC1 is PC,

OurCopyOfJAVAVM is JAVA_VM,

EPGateway is EthernetProfibusGateway

Support :

AnOIdS5 supports S5Timing ,
AProfibusModule , BuiltinBroadcast ;

Cameral supports CopylOfDOS,
CRS232Libraryl ;

Camera2 supports Copy20fDOS,
CRS232Library2 ;

EnterprisePC1 supports

OurCopyOfJAVAVM, EPGateway ;

Fault - tolerance

Inspection uses BuiltinBroadcast for
active replication ;

Deployment :

PLCControlS5 deployed on AnOIdS5 order
2 pause user logging on;

JAVASCADAFrontEnd deployed on

OurCopyOfJAVAVM order 3 pause user ;

VS710Cameralnspector replica O
deployed on Cameral order 1;
VS710Cameralnspector replica 1

deployed on Camera2 order O;

Implementation, Execution,
Debugging, and Maintainance with
the H Tools

From the designs proposed previously the H
tools can produce implementations. First of all,
the implementation file (fig. <>) serves as an
index to collect all the modules and
codifications involved in the application. The H-
apc tool is intended to produce the source code
of complete programs from the codifications,
including code for communications and support
of the H-atoms (for this case of study, only the
SCADA Front-End and the Inspection modules’
codifications could be processed by our current
implementation of the H-apc). The source code
produced from each codification must be
compiled/linked by some existing software
related to the codification language and to the
execution/hardware platform where the
module’s codification will be run. For example,
for the Inspection modules’ codifications, the
source code must be compiled/linked by MS
Visual C++ 6.0 for constructing a console
application suitable for MS-DOS 6.22; for the
SCADA Front-End, the JAVA compiler must be
executed to produce JAVA bytecode programs.
Once the codifications have been transformed
into executable, independent programs, they
must be transferred to the corresponding
execution/hardware platforms. In the future we
plan to develop an automatic tool to perform
this deployment, but currently we do it
manually.

The second H tool to use is the H-apx. It is in
charge of launching the codifications by
following the sequence order specified in the
implementation file. Our current version would
be able to do this from a centralized computer in
a network using TCP/IP communications.
Further extensions are needed to include remote
launching in PLCs.

Once the application is terminated (which
can be commanded also from the H-apx), the
debugging results can be collected and passed to
the H-apl. In our current implementation, H-apx
is in charge of collecting all this information
and producing a single log file that is then
passed to the H-apl. A typical output of the H-
apl is shown in fig. <> for an example of robotic
application.

Finally, all the files involved in the
application can be stored in our BABEL web
site (currently they are compacted into a single
file) for maintainance. This site also provides

Figure <>

Time Log l

Chronagram

facilities to check some dependency problems
between modules and the satisfaction of real-
time requirements.

Srv Summ | Al Togal

E

O médula sjempla servidar
Maduls
Startup Code
cambiar_estada
leer_estado

G0 e
G0 B0 B0 G
B0 B Gl e
G0 B0 B0 G
B0 B0 35 B
B0 B0 35 B
6—09—6@-0@
[-S=F--F =%)
30 59 B0 b8
0 60 B0 b8
30 -0 B0 GE

[

Manejador5d

obtener_secul i 8 Log Detail

Pre-ending C

Fast-ending O
O clierte sjempla

Maduls

4 logs selected: Dretails of the log #78

Type:
Recorded in:
Contents:

g
00

og #82
. log #8283
Load Timelog File...

Shown: 31078125 us.

Totak 31.078125 5. Extra info:)
. Logged by module:
[“homehjuantProgramad At time:

Service Reguest
Service Logic of [cambiar_estado]

Requesting service [madula ejempla
servidar:leer_estado]

modula ejemplo serador:leer_estada
modula ejemplo servidor
23:781250

Conclusions and Future Work

We have presented in this paper a meta-
programming framework for coping efficiently
with heterogeneity in the shop floor (as long as
the shop floor includes programmable devices).
We have developed a number of code
generators for H in the last years, and this can
be extended with an unbounded number of
generators in the future. Basically, the H tool
that is most affected by the inclusion of new
particular platforms and codification languages
is the application constructdd-apc. Thus we
have developed it based on several templates
that can be easily changed and added to the tool,
in most cases without recompiling it. Thus,
heterogeneity in the future is guaranteed to be
coped properly.

Some features that are not dealt with
currently in the H metalanguage itself and may
be subjected to further work in the future are:
migration mechanisms for codifications [<ref>],
higher levels of specification/design (for

Figure <>

example, layers over H that are specialized in
particular domains: manufacturing, robotics,

etc.), more complex and mathematically
grounded validation mechanisms, non-textual
codification languages (for example G of

Labview [<ref>], statecharts [<refs>], etc.),

reflexive properties (to handle the structure of
the application from within the application),

automatic re-launching of failed codifications

with resuming of previous internal status,

integrated development environments (IDEs)
with facilities for managing all the stages of the
design/implementation/testing of applications
and assistants for application templates, more
sophisticated asynchronous communications
between modules, exception handling at the
design level, etc.

Appendix - H basic syntax

In this appendix we provide two figures that
include the syntax of the basic elements of the H
metalanguage.

list_of_ids := <identifier> | <identifier> ,

HDL_data_type := <OMG's IDL data type definition>
HDL_data := /HDL_data_type/ <data identifier> |
data> ... <maximum value>
abbreviation, usually>

]
list_of HDL_data := /HDL_data/ | /HDL_data/ ,

Jlist_of_ids/

range <minimum value that can have the
units

llist_of_HDL_data/

<units for these values: a text

list_of HDL_defs := /HDL_data_type/ ; | /HDL_data_type/ ; llist_of HDL_defs/

time_unit := year | day | hour | minute | second | tenth | hundredth | millisecond |
microsecond | nanosecond

time_units := [/time_unit/ | /time_unit/ s]
time_value := <an integer> /time_units/ | unspecified
timing_range := /time_value/ .. [Itime_value/
signal_def := signal <signal name>

description: “description and purpose of the signal”

[parameter: /HDL_data_type/]

end signal <signal name>

list_of_signals_defs := /signal_def/ | /signal_def/ llist_of_signals_defs/
signal_id := [<xmodule name> ::]<signal name>
serv_char := reentrant | monitor | permanent [[absolute]/time_value/]
list_of serv_chars :=/service_char/ ;| /service_char/ , llist_of_serv_chars/
handler_prio_level := unprioritized | prioritized | <positive integer>
service_prio_level := /handler_prio_level/ | dynamic
list_of paths := <complete path of a file> ;| <complete path of a file> ,

llist_of_paths/

codif_language := iso-cpp | ansi-c | java-2.0 | i8051-asm | step-5-awl

general_platform := hardware | execution | communication | real-time | fault-tolerance
repeatable_module := <module name> | repeated { <identifier> , ist_of_ids/ 11
list_of _repmodules := /repeatable_module/ | /repeat able_module/ , llist_of_repmodules/
platform_instance := ([,] <particular platform instance>)+ [is | are] <platform name>
list_of platform_instances := /platform_instance/ | Iplatform_instance/ ,

llist_of_platform_instances/

platform_support := <platform instance name> supports (<platform instance hame> [D+

list_of supports := /platform_support/ ;| /platform_support/ ; llist_of_supports/

FT := <module name> uses <particular platform instance (fault-tolerance)> for [active
replication | passive replication [with timeout /time_value/]]

list_of FTs:=/FT/ o | IFT/ , llist_of FTs/

codif_deployment := [repetition <identifier> of] <codification name> | replica
<positive integer>] deployed on <particular platform instance
(hardware or execution)> [priority <positive integer> 1[order
<positive integer> 1[pause [/time_value/ | user]][logging
[on]| off J][cl-arguments “text with command line arguments for

the executable program”]

list_of_deployments := /codif_deployment/ ;| /codif_deployment/
/list_of_deployments/

Table <>

Syntax Symbol Use

1] Optional element (zero or one instances of the eferimside the square brackets)

Separates exclusive options. If used inside a sgor@rcket construct, the square brackets
change their meaning to “exactly one option ofef@nents inside the brackets”. If those
square brackets are appended with a ‘+' (plus) ®fnthen more than one of the inside
elements can be selected (but at most, one of each)

Represents an unbounded number of options, or precésely, a list of elements that can be
extended in the future.

0+ Indicates one or more repetitions of the elemesitimthe parentheses.

{ Indicates zero or more repetitions of the elemesitlie the curly braces.

1 The text inside the slashes is a non-terminal @dfin fig. <>.

<> The text inside the angle brackets is an identifier

keyword A keyword of the metalanguage. Keywords compounchafe than one word exist.
Code Piece of code written in some codification langudgmust be enclosed f{ ... }-} in
order to isolate it from the rest of the metalargria
I... A comment that ends with the line.
. A comment that does not end with the line. It carb®nested with other comments.
References

[CIM] J.A. Fernandez-Madrigal, C. Galindo, J. GdezaE. Cruz, and A. Cruz, "A Software Engineering
Approach for the Development of Heterogeneous RoBgiplications”, Robotics and Computer-
Integrated Manufacturing (to appear).

[XML] E. R. Harold. XML Bible, 1999, Hungry Minddncorporated.

[passive and active replicas] ?

[active objects] ?

[OMG IDL] http://www.omg.org/

[OMG CORBA] Schmidt D. ACE+TAO Corba Homepage, 2005
http://www.cs.wustl.edu/~idt/TAO.html

[acyclic graph]M.R. Trudeau, Introduction to Grafeory, Dover Publications, 1993.
[BABEL website] Fernandez-Madrigal J.A. The BABEkwtlopment system for integrating
heterogeneous robotic software. Tech. rep. UnityeosiMalaga, 2003.
http://www.babel.isa.uma.es/babel/

[migration mechanism] ?

[labview] http://www.ni.com/labview/

[statechart] Harel D. StateCharts. A Visual Forsralifor complex Systems. In Science of Computer
Programming 1987, vol. 8 1-4.

[ebnf] A summary for the EBNF Notation. Documen©OIEC 14977 : 1996(E). Accesible online from
http://www.cl.cam.ac.uk/~mgk25/iso-ebnf.html

[photoelectric sensor] Diffusive sensor with backgrd suppression. DataSheet RL28-8-H-400-RT-
B3B/73c. Pepperl + Fuchs. http://www.am.peppechfiucom/pdf/documents/ri28-8-h-400-rt-b3b-73c-
datasheet.pdf

[conveyor gearmotor and starter] MOVIMOT. httpww.sew-eurodrive.com

[pneumatic diverter] Kuhnke Airbox. http://www.kukeairbox.com/index.php

[SV710 cameras] SIMATIC VS 710. Quick Referencedauh5E00032597-02 Edition 11/2001
[Simatic S5-100 U] S5-100U. Programmable ControBystem Manual. EWA 4NEB 812 6120-02a
[Profibus-DP] PROFIBUS, System Description. Vensiact. 2002, Order Number 4.002

[CP5431] Siemens Automation & Drives Product Ty Usterface Master for SIMATIC S5 Order No.
6GK1 243-3SA00

[Profibus-RS-232 gateway] PROFIBUS - RS232 GatelddPl_RS, SHAUF
http://www.schauf.haan.de

[Ethernet-Profibus-dp] APP-ESP-GTW applicom® GATBEvRofibus to Ethernet or Serial.
Http://woodhead.com

[Intel] http://www.intel.com
[MS-dos] http://www.microsoft.com

[protected—mode for accessing all the memory] awCiThe MS-DOS Memory Environment. ACM
SIGICE Bulleting, Vol 21, n°3, Jan 1996.

[Visual C++] D.J. Kruglinski. Inside Visual C++. ibtosoft 1997.

[AWL] S5-100U. Programmable Controller. System Man&EWA 4NEB 812 6120-02a
[WXP] Microsoft homepage (2007). http://www.micrétscom

[Java] Sun’s JAVA homepage (2007). http://www.somfjava/

[socket interface] Taylor E. TCP/IP complete. Mc@iidill Professional, 1998.

[AS-i] http://www.as-interface.net/

