
The H Metalanguage and the H tools
Juan-Antonio Fernández-Madrigal, Cipriano Galindo Andrades, Ana Cruz Martín, Javier González

Technical report (Draft), May 2007
System Engineering and Automation Dpt., University of Málaga (Spain)

Abstract.
This technical report (draft) describes in detail the H metalanguage and the H tools for programming heterogeneous applications
with distributed, concurrent, real-time, and fault-tolerance requirements. This is an evolution of our BABEL development system,
which in turn was an evolution of our NEXUS programming framework.

Introduction
The integration of heterogeneous software
applications, specially when they involve hardware
programming, may be obstructed due to
heterogeneity. This is specially important in areas
such as CIM or robotics, but also appears in other
programming environments (for example, the Web).
Heterogeneity appears in different forms. To begin
with, a wide variety of equipment can be found in the
shop level of a factory: programmable controllers,
robots, AGVs, sensors and actuators, CNC
machinery, warehouses and material handling
systems, and so on. Communications may also
involve different kinds of networks with different
requirements. Most of the hardware elements in a
modern application must be programmed, either in a
commercial-off-the-shelf (COTS) solution or in a
more general purpose language (C, C++, Java…),
which adds even more heterogeneity. Moreover, the
programming skills of the staff involved in the
development of an application will change depending
on the complexity of their tasks.

In addition to the heterogeneity produced by the
diversity of components needed, the adaptation to a
changing global market unavoidably demands
flexibility. Changes will affect to the wide range of
heterogeneous elements enumerated previously, thus,
in order to keep a manageable system, they must be
treated in a simple and efficient fashion.

We claim that software is a good starting point to
cope with heterogeneity. Programming languages are
very close to the root of the problem and the plasticity
of software makes it well situated to address it. For
example, a common programming paradigm that
could be used for all the equipment would reduce
heterogeneity and increase flexibility. However,
approaching heterogeneity by forcing the use of a
single software paradigm or language is difficult to
put in practice due to the need of all the
manufacturers to adhere to it. It seems more
appropriate to look for a (maybe simpler) solution
that is able to integrate different programming
approaches. This would produce better results than a
common paradigm when confronted to very different
needs and situations.

In this paper we follow this line of research and
propose a solution to heterogeneity and flexibility

from the language programming perspective, aimed to
adapt as best as possible to the integration of
heterogeneous components and to facilitate
reusability and extensibility, and thus, to address
appropriately the flexibility issue. Our approach is an
evolution of a previous work on the same problem
[<ref>], with a completely new formalization and
features for fault-tolerance and communication
frameworks. It consists of a simple and well defined
metalanguage, called H, for designing and
implementing distributed software modules (for
example, programs in charge of controlling
mechanisms) that can be connected through different
classes of networks. Each of these modules, in turn,
can complete its functionality with the writing of
different programming languages (COTS, general
purpose, etc.) in order to adapt to each particular
device. The H metalanguage includes concurrence,
fault-tolerance and real-time features to specify the
different requirements of the application and the
devices that compose it.

Furthermore, we have provided H with a set of
tools that deal with heterogeneity from a wide
perspective that covers all the stages of the
development lifecycle of the application. In general,
H and the H-tools enable two valuable features:
extensibility and validation/debugging mechanisms.
Extensibility allows the integration of any other new
elements that are not considered in the proposed
specification; this characteristic maintains both
heterogeneity and flexibility, while reduces the
software development costs. Validation offers the
chance to check the proper function of the system
prior to its deployment, while debugging is intended
to obtain conclusions about execution performance of
the system.

We have tested preliminary versions of the H and
the H-tools (BABEL and NEXUS) in our automation
research labs on robotic applications during the last
ten years [<ref>]. In this paper we illustrate the new
formalization with a case of study of a CIM
application. The obtained results have been promising
in both cases, having reduced the cost of development
substantially by increasing flexibility while coping
with heterogeneous devices with reduced effort.

The plan of the paper is as follows. In the next
section we introduce the precise definition of the H
metalanguage and describe the H tools. The following

section presents a case of study. Finally, we end with
the conclusions of the presented work, along with an
outline of some future work in this area.

The H Metalanguage and the H
Tools
In this section we describe our specification language
for the design and programming of heterogeneous
applications, called H (for “Heterogeneity”), and the
set of tools that produce, deploy, validate, and debug
executable programs from those designs, This is a
formalization and extension (mainly with multiple
communication platforms and fault-tolerance
capabilities) of a previous work called BABEL
[<ref>]. H has been conceived for producing
heterogeneous codifications (even in different
programming languages) of distributed software with
real-time and fault-tolerance requirements. Since it is
essentially a description language, a specification
written in H can be easily transformed into modern
markup languages such as XML [<ref>], which
provide good structure capabilities and a widely
available set of tools for edition and validation.

H has the following main features:

a) Heterogeneity enabled. At all the levels of
the design of the application (from the
structural specification of programs to the
deployment of the executable code), H
allows the designer to use very different
components, both hardware and software, in
an integration framework that can take
advantage of the best qualities of each one.
Heterogeneity is properly encapsulated and
managed, and the parts of the design that do
not depend on concrete components are
conveniently identified and isolated so they
can be reused to the maximum.

b) Distributed. H is aimed to implement

distributed applications over heterogeneous
networks, possibly with fault-tolerance and
real-time requirements. Of course,
applications that run entirely on a single
machine are also possible.

c) Concurrent. The main execution unit of an

application specified with H is the module,
which runs on a given computing platform
(computer, PLC, embedded processor, etc.).
Within the module, H enables the designer to
specify concurrent execution threads, and
can regulate concurrency at a fine
granularity level by setting appropriate
characteristics for the services of the module.
Also, it provides mechanisms for
synchronization and internal communication
of threads.

d) Real-time. The design of the application can
include real-time requirements in the
execution time and in the communication
between modules. A relative, hierarchical
priority scheme is provided that can be
mapped both to non-(or soft) real-time
operating systems’ facilities and to hard real-
time platforms.

e) Fault-tolerant. The modules of an

application have separated memory spaces
and execution processes, so a fault in one
should affect the minimum to others and to
the integrity of the whole application. In
addition, modules can be deployed with
several replicas of each one. Mechanisms for
supporting a variety of policies for
distributing the work between the replicas
and merging their computation results are
provided, including both passive and active
replication modalities [<ref>].

f) Extensible. It is easy to enrich H with any

number of components not covered at this
time. Also, H has some object-oriented
characteristics, such as inheritance, which is
available for reducing the cost and time of
designing modules, and for improving
reusability. Future work is to be done on
including other object-oriented features such
as polymorphism.

g) Validation/debugging enabled. All the

information that can be retrieved from the
application for validation is available from
its H specification, thus different validation
algorithms can be run on it prior to
execution. Also, the application can produce
logging results of its execution for off-line
analysis.

In H, an application is composed of a set of

modules (possibly distributed in a network), being
each module executed on a single computational
machine and providing a number of public services to
other modules. During the design with H, the
components of the application and its requirements
are separated conveniently into the heterogeneous
components and the portable ones. In the rest of this
section we detail the different levels of the H
metalanguage, its syntax, and its typical use for
designing and implementing a CIM application.

The Portable Components
For improving the most the reusing of the work done
in a given application, and for enabling heterogeneity
at the design level, the parts of the design that are not
tightly linked to specific hardware/software
components (that is, the portable parts), are specified
separately from the rest. The main portable

components in an H application are the modules.
They are Active Objects [<ref>] which contain an
internal status and provide some services and data
definitions to other modules. In H, modules are
specified at two separated levels: their structural
design and their codification design. The latter can
include weak references to non-portable components.

Structural Design. The structural design of a module
covers its public definitions and services, and some
characteristics that do not depend on any particular
software/hardware. Thus, the structural design is
completely portable and can be reused as much as
possible. Each structural design must follow the
syntax shown in fig. <>.

For improving the reuse of the structural designs,
H includes a multiple inheritance mechanism (the
inherits from keyword) that allows the
designer to easily create modifications of existing
designs, to combine several designs into a more
complex one, and to make schemes of designs not
intended for implementation (through the use of the
abstract keyword). If a structural design inherits
from another one, its definitions are always added to
the parent’s, except when they collide: in that case
they replace them completely.

Within a module’s structural design, services are
public functions offered to other modules (and to the
module itself). A service is the minimal sequential
execution entity within a module. It can access the
internal status of its module as described in the

codification of modules, further on. It also can request
other services and thus generate communications.

Services are of three types in H: regular, event
handlers, and notification handlers. A regular service
is requested by others or started by its own module
when the module initiates (for example, a service for
making a “homing” in a manipulator arm). An event
handler service is executed only when an
asynchronous event is sent by another service (for
example, an alarm). Finally, a notification handler
service is an event handler that only is visible within
the module. All the services of a module can run
concurrently within their module, but some of them
can be set for blocking any other’s execution. Table
<> shows the characteristics that can be used for
achieving different behaviors.

Each service in a module can have a priority of
execution relative to the priorities of other services of
its own module. This is part of the hierarchical
relative priority system of H. At run-time, the priority
assigned to each module (relative to the other
modules’ priorities) serves as the base for the
priorities of its services. Services within a module are
divided into four priority categories: high
(prioritized), dynamic, numeric, and low
(unprioritized). High priority services can pre-empt
the execution of any non-high services of the same
module. This is useful, for example, for assuring that
a hardware monitoring algorithm never loses its time
requirements. Low priority services can be pre-
empted by any other service of the module. For

Figure <>
Module [abstract] structural design <module name> [inherits from /list_of_ids/]

 Description: “ Description of the module ”

 Author: “Author name”

 [Data definitions
 /list_of_HDL_defs/
 End data definitions]

 [Signal definitions
 /list_of_signals_defs/
 End signal definitions]

 (Service <service name>
 [Characteristics: /list_of_serv_chars/]
 Priority: /service_prio_level/
 [Inputs: /list_of_HDL_data/]
 [Outputs: /list_of_HDL_data/]
 Description: “ description of the service ”
 End service <service name>)+

 { Event handler <signal id>
 Priority: /handler_prio_level/
 Description: “ description of the handler ”
 End event handler <signal id> }

 { Notification handler <signal name>
 Priority: /handler_prio_level/
 Description: “ description of the handler ”
 End notification handler <signal name> }

End module structural design <module name>

example, consider a service for displaying remote
information in a SCADA system. Dynamic priority
services run at the same priority that their caller.
Finally, numeric prioritized services (only monitors
and event/notification handlers can be set that way)
are assigned a relative priority inside the priority
range associated to the module, which in turn will
depend on the priority bases associated to other
modules during deployment (see section <>).

All services in a module may have input and/or
output data that must be appropriately typed. Also,
the Data definitions section may include data
types that may define the module for other modules
and for itself. Thus, other modules in the same
application can use directly these data definitions as
their own, just qualifying them with '::' syntax. In
order to keep the structural design of a module
completely portable and separated from
heterogeneous concerns, H uses a common and well-
defined definition language for specifying data types.
It is called HDL (for “Heterogeneous Data
Language“), and it is simply a subset of the OMG's

IDL [<ref>] that includes only definition of types and
constants (it does not consider exceptions, modules,
interfaces, inheritance, etc.). This especification
language is the same for all the modules, independtly
on
their implementation. However, when a codification
is written for a given module and a particular
codification language is chosen for its
implementation, the HDL can be restricted. Consider
for example a codification of a module that is
intended to be implemented in assembler or executed
in a PLCs. It is common in that case that no real
numbers or complex data types exist. If during the
generation of the implementation it is found that the
codification language restricts the HDL of its module,
a check is performed for assuring that all the types
used in the codification satisfy the restrictions
imposed by the codification language, producing a
generation error if not.

Finally notice that the input or output data of
services may include explicit information about the
semantics of the data (namely, range and units, as

Table <>
Characteristic Effect Typical use

reentrant

A reentrant service can start its execution concurrently
more than once and with other reentrant services,
without waiting for the termination of other requests. It
is not needed in monitor services or
event/notification handlers, since they are always
reentrant (and cannot be set as non-reentrant).

In contrast, a non-reentrant service blocks the execution
of any other service in the module, except monitors and
event/notification handlers.
Reentrant services require an appropriate use of shared
resources, specially accesses to the internal status of the
module. H provides suitable synchronization constructs
for that purpose (see section <>).

-For improving the throughput of the module
when more than one execution thread exist,
or when the module can have multiple
clients.

monitor

A monitor service is in a sense private to the module,
since it cannot be requested: it is launched automatically
when the module is launched, after the startup logic ends
(see section <>). Once terminated, it does not return any
data.

Event/notification handlers cannot be set as monitors
since they are requested in a different fashion.

-For initiation and configuration of some
component (initiating certain hardware or
software driver, for example).

permanent [
[absolute]

/time_value/]

A permanent service does not ever terminate, thus it
cannot have input or output data. Once it is requested (or
launched in the case of a monitor service) and its logic
terminates, it is initiated again, and this behaviour is
automatically repeated after each iteration. Only when
the module is shut down, and before the preending logic
starts (see section <>), the service is signalled to
terminate when the current iteration ends.

Event/notification handlers cannot be set as permanent,
since that would contradict their way of being requested.

If this characteristic is parameterized by a time value
(greater than zero), the service will initiate the next
iteration after the time indicated passes. If the
absolute keyword is used, the time indicated will
include the time already spent by the execution of the
last iteration of the service.

-Usually, this characteristic is used together
with monitor for setting periodic tasks
(supervisory code, simulation, periodic event
signaling, etc.).

-If the task is intended to start on demand and
not with the launching of the module, the
permanent characteristic should be applied to
a non-monitor service.

-If the time value parameter is used with the
absolute keyword, the service will be
enabled as a hard real-time task with that
period.

shown in fig. <>). We have found this feature most
useful for facilitating the reuse of modules by
different programmers at different moments.

Codification Design. Apart from the structural design
of a module, some codification (programming) of it
must be provided to construct an executable program.
Fig. <> shows the syntax for codifications, which
follows an Active Object framework. A codification
is always associated to some structural design, that is,
to some module, either by linking it explicitly to a
module name via the implements keyword or by

referring to another codification via simple
inheritance (the reviews keyword). In case of
inheritance, the Startup logics of all the codifications
in the inheritance hierarchy are assumed to execute
downwards (first the most abstract), while the
Preending and Postending logics are assumed to be
executed upwards (first the most concrete). Service
logics can be set to execute in the most convenient
direction, or to substitute completely the codification
of the parents if the replace keyword is used.

Figure <>

Module codification design <codification name> [implements <module name> | reviews <codification
name>]

 Description: “ Description of the codification ”

 Author: “Author name”

 [Codification language: /codif_language/]

 [Internal status

Data definitions (types, variables, or constants; no code allowed) for the internal status of the module, written in the codification
language.

 End internal status]

 [Replication

This logic is called in passive replication only whenever the leader replica has transmitted to this one its internal status. It is
conceived for updating other pieces of data apart from the internal status, or to respond to errors in that replication.

 [Deportabilization: /list_of_ids/]
 End replication]

 [Startup logic [, Timing /timing_range/]

Code that will be executed at the start of the module and before any service is available; written in the codification language.
 [Deportabilization: /list_of_ids/]
 End startup logic]

 [Preending logic [, Timing /timing_range/]

Code that will be executed when the module is shutting down but before all the running or pending services have ended.
 [Deportabilization: /list_of_ids/]
 End preending logic]

 [Postending logic [, Timing /timing_range/]

Code that will be executed when the module is shutting down and all the running or pending services have ended.
 [Deportabilization: /list_of_ids/]
 End postending logic]

 [Auxiliary logic

Diverse pieces of code (and only code, no data) that can be useful for several of the other logics. .
 [Deportabilization: /list_of_ids/]
 End auxiliary logic]

 [Externals
 [[Linkable: /list_of_paths/ ;] |
 [Processable: /list_of_paths/ ;] |
 [Passive: /list_of_paths/ ;]]+
 End externals]

 (Service <service name> [[replace | upwards | downwards]] [, timing /timing_range/]

Here comes the internal codification of the service, written in the codification language. Possibly executed concurrently with
other services’ logics (depending on the service chararcteristics).

 [Replication:

This logic only can be used in active replication. It will be called only on one replica (the last to finish the request) after all the
existing replicas of the module finish a request for this service, and will have as parameters the same input and output parameters
as the service.
 This logic is in charge of retrieving the results produced by all the replica requests and producing a unique result through some
merging policy or algorithm.

The output parameters corresponding to each replica will be accessable through an array-like construction of the codification
language, indexed by the order of the replica.
If this logic is not included and active replication is selected, the results returned by the service are the ones of the last replica
(the others are discarded).

]

 [Deportabilization: /list_of_ids/]

 End service <service name>)+

 { Event handler <signal id>

Here comes the internal codification of the event handler, written in the codification language. It will be executed concurrently
with other services’ logics.

In case of active replication, all the handlers will be called in all the replicas, but no special code is needed to retrieve a common
result since handlers do not return anything.

 [Deportabilization: /list_of_ids/]

 End event handler <signal id> }

 { Notification handler <signal name>

Here comes the internal codification of the notification handler, written in the codification language. It will be executed
concurrently with other services’ logics.

In case of active replication, all the handlers will be called in all the replicas, but no special code is needed to retrieve a common
result since handlers do not return anything.

 End notification handler <signal name> }

End module codification design <codification name>

See in the figure how the codification design
includes portions of code and data written in some
codification language. This is the main reason why
we call H a “metalanguage”: it allows the designer to
cope efficiently with the existing heterogeneity in
programming languages. All the so-called “logics”
are sequential routines, and their variables, constants,
or type definitions are considered under their scope
only. They have also access without restrictions to the
internal status of the module. In addition, the
Externals section permits the designer to write
portions of code in external files for make the
codification clearer. These files can fit in three
categories: Linkable for those that must be included in
some way in the source code of the program generated from
the codification (for example, header files in the case of
using C as the codification language); Processable for
those files that must be processed in some way after
including them in the generated program (for
example, for compiling or linking to the executable);
and Passive for those that simply are to be copied
in the destination directory of the generated program
(for example, for configuration files). The designer
should assure that the external files are completely
portable in order not to compromise the heterogeneity
management of H.

The codification of service logics must be able to
deal with input and output parameters whose types
are specified in the structural design of the module in
HDL. Therefore, when a codification design is used
for producing the source code of a executable
program written in the specified codification
language, some code must be included by the

generation tool (see section <>) to transform from
HDL into data types and operations in that language,
and vice versa. This mapping is carried out differently
for each codification language. It only depends on the
codification language, even when a communication
platform such as OMG CORBA [<ref>] includes IDL
facilities. The general rule is that the input or output
parameters of services maintain their names (as
variables, typically) when mapped to the particular
language. If within a given logic some variable of a
type declared in the Data Definition section of
a module is needed, the way to refer to that type can
also be found in the mapping of HDL for the given
codification language. Finally, also remember that a
given codification language may impose restrictions
on the HDL used for the structural design of the
module, as explained in section <>.

For keeping the codification design as portable as
possible, many constructs that would made the logics
to depend on some particular component (for
example, operating system facilities, user interaction,
etc.) or on intrinsic features of H are dealt with
through the so-called “non-portable atoms”. A non-
portable atom is a macro with some parameters that
can be included at any point in a logic using a special
syntax:

#_H-atom(<atom name>,…<parameters - either

constants or variables of the codification
language>…)_#

That syntax is intended to keep it distinguishable
from the sentences written in any codification
language. H provides the programmer with atoms for

dealing with many basic issues related to intrinsic
aspects of H and with our general platforms. A few
relevant ones are shown in fig. <>. Notice that the set
of atoms that can be used in a codification may be
restricted by the codification language that is chosen.

For example, those for dealing with multithreading
synchronization (semaphores) are not available in
cyclic executive platforms.

Table <>
Atom name General Platform Use

Request-synchronous-
static

communication

Issues a request for some service of a module (this includes requesting
services of the very module where it is used), passing input parameters
and retrieving output data if present. Errors are also communicated to the
caller in special return variables. The synchronous behaviour implies that
the caller is blocked until the callee returns an answer (or an error). The
static behaviour implies that both the callee module and service are known
before execution time.

If there are several communication platforms (see section <>) available for
issuing the request, they are used sequentially until one of them
successfully sends and receives the information (the atom does not allow
the programmer to specify one platform to use).

Also, real-time requirements can be included in the atom for specifying
the minimum and maximum times allowed in the request, and also to set a
timeout. If the timeout fires, the request is discarded (as any future
incoming answer).

In the case of the callee module being a repetition (see section <>,
paragraph on implementation), this atom also can include the repetition
identifier to refer to a particular copy of the destination module.

In the case of the callee having several replicas for fault-tolerance
purposes (see section <>, implementation), the request will be issued to all
of them; in the case of active replication, they will coordinate to send a
single result.

Request-synchronous-
dynamic

communication The same but with a dynamic behaviour: both the callee module and
service can be set up at execution time.

Send-event

Send-notification
communication

Both issue asynchronously a signal to some module, which can be set
dynamically at execution time or as a constant in design time.

Due to their asynchronous nature, these atoms do not allow the
programmer to specify real-time requirements.

Events have input parameters, so this can be used as a general
asynchronous communication method. No response is received by the
caller or guarantee that the callee has caught the event.

Notifications are intended only for internal events (in the same module as
the caller), so they do not carry the destination module information.

Number-repetitions

Name-repetition
(intrinsic)

If the codification is a repetition of a given module (see section <>), these
atoms allow it to check out how many repetitions exist of its module and
also get there names, in order to construct dynamic requests which are less
tied to a particular application than static ones.

Real-time-suspend

Time-stamp
real-time

Perform an operating-system dependent suspension of the thread that
executes that logic during a given time, or read the current time,
respectively. The latter provides a global time shared and synchronized
through all the computing machines of the application if a real-time
platform with that capability is used. Otherwise, it provides a local
measure of time.

User-log real-time Records a time-stamped user log that can be examined off-line if the
codification has activated its logging option (see section <>).

Critical-zone-create

Critical-zone-enter

Critical-zone-leave

execution /
hardware

These atoms allow the programmer to synchronize multiple concurrent
threads (that is, reentrant services as well as monitor services and
event/notification handlers) for accessing shared resources, mainly the
internal status of the module. They follow the classic semaphore
paradigm.

They may include timeout parameters for real-time needs.

Drop-replica fault-tolerance

Drops the current codification as a replica, both in passive and active
replication scenarios, even when it is the only replica currently up (in that
case the module will cease to respond). It is intended for reacting to
situations where a given replica is not able to continue working correctly.

It is remarkable that all the logics of a codification
include an optional section called
Deportabilization . If a logic needs some
software or hardware component not covered by the
non-portable atoms (for example, a software library
for mathematical processing or a data acquisition
card), that section encourages the designer to make it
explicit, and so, provides a clean and effective way of
including software and hardware heterogeneity at the
codification level.

Codification design also permits to specify real-
time requirements (through the Timing keyword),
mainly for validation purposes.

The Non-Portable Components
Both the structural design and the codification design
of modules explained in the previous section are
mostly portable. In a heterogeneous application,
however, it is common to have a number of
dependencies that cannot be avoided, and in fact,
must be exploited. We have already seen that in the
codification design weak dependencies can appear
explicitly through the Deportabilization
section. In order to use correctly that feature, the non-
portable components must be previously defined. In
our framework this is enabled through General and
Particular Platforms. General Platforms serve to
classify the non-portable support necessities of the
application: hardware, execution, communications,
etc., and allow us to classify both commercial and
non-commercial off-the-shelf solutions. Particular
platforms are instances of general platforms (for
example, a given operating system or a concrete
processing hardware). Currently, H recognizes the
following general platforms:

a) Hardware platforms (HP). A HP represents a
set of hardware devices needed for the
physical execution of the application, which
includes at least one processor unit and
shares a motherboard1. This kind of platform
can group together: CPU(s), motherboard
devices (hard disk, sound card, graphic card,
real-time clocks, etc.), plugged-in devices
(acquisition boards, automation interfaces,
network interfaces, etc.), and peripherals
(monitor, printer, external storage devices,
etc.).

b) Execution platforms (EP). An EP represents
the basic software execution environment of
the application. This includes: operating
systems, virtual machines, software libraries
and execution libraries (e.g., interfaces with
hardware devices).

c) Communication platforms (CP). A CP
comprehends the software needed for
communicating the modules of a distributed

1 In a microcontroller, the “motherboard” typically includes just the

CPU, main memory, and I/O facilities.

application. Its particular platforms can
provide from simple protocol support (peer-
to-peer, TCP/IP) to more abstract object
distribution (like CORBA [22]), even a
monolithic scheme (that is, no network).

d) Real-time platforms (RTP). A RTP provides
real-time facilities in software form: real-
time scheduling, time measurement,
synchronization, etc. It can also provide
clock synchronization mechanisms for
giving to the designer of the application a
common time measurement in all the
computing machines.

e) Fault-tolerance platforms (FTP). A FTP
provides software fault-tolerance facilities
(for example, active replication [<ref>]). In
H there is a general support for including the
facilities provided by these platforms.

Fig. <> shows the syntax for defining particular

platforms. If a codification design refers to some
particular platform in one of its
Deportabilization sections, and that platform
is not defined in any such file, no application that uses
that module can be constructed.

Figure <>

Particular /general_platform/ platform
<platform name>

 Description: “ Description of the
platform ”

End particular platform <platform name>

Communication platforms have some special
issues that we should remark. Firstly, an application
can use more than one communication platform for
issuing service requests and signals between modules.
A module’s codification that is set to run on a given
execution/hardware platform will have access to the
communication platforms declared to be supported by
that execution/hardware (see section <> for a deeper
explanation on how to specify these support relations
between platforms). This means that the codification
is automatically provided with as many message-
reception loops as communication platforms has
available, all running concurrently and serving
requests and signals to the module. Also, when a
codification issues a service request or a signal, it
must choose a communication platform if more than
one is present. In that case, H only guarantees to issue
the request through the first platform that is able to
finish it correctly. If some platform fails, another one
(without any predefined ordering) is selected and the
request repeated. If no platform succeeds, an error is
returned.

A second issue with communication platforms
comes from the fact that a communication link can be
mixed (for example, by using a gateway that conveys
data from a network of one type to a different one,
like in the example of section <>). Since H is only

intended to use communication layers above the
transportation one, and the transportation layer can
hide the link details effectively, there is no problem in
mixing links in a network for the design of the
application. The designer just has to include the
communication platforms corresponding to both ends
of the link in the computational machines where the
modules’ codifications are going to be deployed.

A third issue with these platforms is that many of
them require that the modules are registered in some
directory service (the Name Service in CORBA, for
example) in order to be visible to others. In H this is
guaranteed to be done dynamically, that is, each time
a service or event request is initiated, the program
will check if a reference to the destination module has
been previously obtained through that directory
service; if not, the reference will be get at that time,
otherwise the previous reference will be used.
Therefore, possible dead-locks in retrieving these
references (for example a cyclic situation where a
module is going to request services from another one
which in turn will request services from it) are
avoided. Appropriate mechanisms for deleting
references of modules that are not longer running
must be provided by the communication platform.

The Application
Once a repository of modules is available with both
structural and codification designs, whole
applications can be designed. From the structural
point of view, an application is just a set of modules
that communicate to each other through service
requests and/or events. From the codification point of
view, it is a set of relations between programs
(generated from codifications) and computational
machines (where those programs run). Since an
application can be specified at both levels, two parts
must be included in its design, as explained in the
next subsections.

Application. For constructing the structure of an
application, a list of modules (its structural design)
must be provided. This is done through the syntax
shown in fig. <>.

In this specification there is a special feature to
cope with the need of having more than one copy of
the same module in the application, for example,
when the application includes a number of identical
programmable devices. For activating that feature, the
repeated keyword can be used after a module
name, providing at least two identifiers. Each
identifier will refer to a copy of the module and must
be different from the others. Notice that this feature is
independent on and has nothing to do with
replication, which is used for fault-tolerance purposes
as explained further on.

Figure <>

Application <application name>

 Description: “ Description of the
application ”

 Author: “Author name”

 Modules: /list_of_repmodules/

End application <application name>

Implementation. Each structural design of an
application must be accompanied by a specification of
its implementation in order to produce executable
programs. In fact, several implementations of the
same application can be provided, for example if
there are changes in the distribution of the modules
among the computers, or in the hardware support, etc.

An implementation of an application is written
following the syntax shown in fig. <> (details on the
syntax of some constructs can be found in Appendix
<>). The first thing to notice is that a number of
specific instances of particular platforms must be
provided. For example, consider an implementation
of a control application with a number of PLCs:
several instances of the controller platform must be
specified.

Figure <>

Implementation <implementation name> for
<application name>

 Description: “Description of the
implementation”

 Author: “Author name”

 Platforms: /list_of_platform_instances/

 Support: /list_of_supports/

 [Fault-tolerance: /list_of_FTs/]

 Deployment: /list_of_deployments/

End implementation <implementation name>

In the implementation design also appears a
Support section. This is the way of specifying the
support relations existing between particular
platforms (more exactly, between instances of
particular platforms). For example, a given computer
can provide support for a given operating system,
which in turn can provide support for a given
processing library. These relations form an acyclic
graph which allows us to validate if the application to
be implemented can rely on the appropriate
components to satisfy its requirements.

The optional Fault-tolerance section
allows the designer to activate fault-tolerance
mechanisms in the application through replication,
either active or passive for each module. In particular,
it associates an instance of a fault-tolerance particular
platform (which must have appeared previously in the
Support section or be either the built-in

platform) to any module for which replication should
be activated. All the replicas of that module will use
that type of replication (active or passive) and that
platform to coordinate their service requests and
internal status.

The Deployment section allows the designer to
distribute codifications of the modules among the
available execution/hardware platforms declared in
the Support section. There are two features that
must be contemplated: on the one hand the possibility
of deploying a number of repetitions of a given
module which are distinguishable as different
modules by the identifiers previously declared (with
the repeated keyword) in the application file; on
the other hand the capacity of deploying different
replicas of a module for fault-tolerance purposes. H
has provision for the following cases:

a) A module is deployed as a single executable

program (no repetitions of the module and no
replicas). In that case, the repetition …
of keyword must be omitted and there
should appear only one codification
corresponding to the module in the list of
deployments.

b) A module is deployed with replication (fault-

tolerance activated), but without repetitions (it
appears as only one module to the rest of the
application). In that case, the repetition
… of keyword must also be omitted, but a
number of identical codifications of the given
module should be declared in the list of
deployments, and all of them will be either
active or passive replications (according to the
Fault-tolerance section explained
before). In passive replication, the replica
number will define the order in which the
replicas will be selected for processing
requests (when the highest number ceases to
respond after the timeout given in the
Fault-tolerance section, the next one
will take its place; whenever the selected
replica produces the result, its internal status
will be replicated in all of the others; all the
replicas not receiving correctly that
communication will be deactivated
automatically). On the contrary, in active
replication, the replica number will be
used to index the output data produced by
each replica in the code in charge of
merging/coordinating their results. In that case
the replica to produce the final result will be
the latest in finishing the request (no
communication is needed to replicate the
status since all the replicas process the same

data; however a broadcast mechanism is
needed to send the request to all of them)2.

c) A module is to be deployed with repetitions

that appear as different modules for the rest of
the application, some of them also including
replication for fault-tolerance purposes. Then,
the repetition … of keyword must be
added to all the codifications of the module.
Those repetitions that include replication will
appear as several codifications that share the
same repetition identifier. The codifications
that only appear with one repetition identifier
will not have fault-tolerance support.

Producing, Executing, Debugging, and
Maintaining Applications
Once the design and implementation of the
application is written, automatic tools that validate the
design and, if possible, construct the executable
programs are available.

For automatically generating the programs of the
application (that can be many if they are intended to
run on different machines over a network), we have
developed a software called H-apc, for
“Heterogeneous APplication Constructor”, that
interprets the files described in the previous
subsections and generates source code for the
specified codification languages, execution platforms
(operating systems), and a number of compilers and
interpreters. In particular, it generates a set of source
code files and locates them in a separate directory for
each codification. H-apc is strongly based on code
templates in order to be easily extended with new
languages, OSs, and compilers/interpreters. Currently
we have a version of this tool integrated into a visual
CASE application for designing modules and
codifications, called the BABEL Module Designer
[<ref>]. It provides support for codifications written
in C, C++, JAVA, and for these execution platforms:
MS Windows NT+, LynxOS, and the JAVA VM.

For deploying and executing a given application,
once it has been constructed with H-apc and
compiled/linked if needed, we use another software,
called H-apx (for “Heterogeneous APlication
eXecutor”), that is able to launch the programs on
their respective computational machines from a
remote station, if it can, or locally, and collect their
logging information when that option is activated
through the logging keyword in the list of
deployments of the implementation file. The list of
deployments also configures the relative priorities of
the codifications (the priority keyword) and their
launching order (the order keyword). Pauses

2 Notice that active replication is suitable for modules that do not

request services from other modules (or from theirselves), since
in other case all the replicas will issue the request, generating a
not proper operation. For modules that request services, it is
more suitable to use passive replication instead.

before the execution of each deployed codification
can be set (the pause keyword). When a
codification produces an executable program, it may
need some command-line arguments to be sent. This
can also be achieved through the cl-arguments
option. All these parameters are currently entered in a
visual application called the BABEL Execution
Manager [<ref>], that can be deployed on MS
Windows computers.

If logging has been activated for some codification,
the results can be analyzed off-line through our H-apl
(“Heterogeneous Application Logger”), a software
that shows graphically the sequence of events that
have occurred during execution (a previous version
was the BABEL Debugger [<ref>]). This allows the
programmers to inspect possible real-time flaws or
bad ordering of requests, apart from user-defined
events that can be registered at any time. The logging
time-stamps are global (synchronized between all the
computing machines of the application) if real-time
platforms are available that provide such feature;
otherwise logs are time-stamped locally for each
codification.

Finally, all the designs produced with H can be
stored in our BABEL web site ([<ref>]) for
maintainance. The site includes multi-user
priviledged accesses, version support, and some
validation tools. For example, it is possible to
examine a set of modules of an application to detect
loops in their service requests or the impossibility of
satisfying the real-time requirements specified in the
Timing keywords of codifications.

A Case of Study
Figure <> is a case of study of a simple industrial cell
in charge of classifying goods that are transported on
a conveyor. The desired operation of the system is as
follows: a good on the belt is transported until a
presence sensor detects it, which triggers the
detention of the belt and the recognition of the object.
The recognition system (composed of two intelligent

cameras for improving recognition) captures an image
and classes the object according to its brightness. The
result of the classification makes the routing
mechanism (a diverter on the belt) to head the object
to the correct direction. In the following subsections
we describe in more detail the hardware and software
available in this plant and the design and
implementation of a control and SCADA application
using H and the H tools. We will show how, in spite
of the apparent simplicity of this plant, the
heterogeneity level can be quite high.

Hardware and Software Available
At the field level, the plant has the following sensors,
actuators, and controllers:

a) A presence sensor (typically a photoelectric
sensor, such as [<ref>]) that gives an on/off
binary output under the presence or not of a
good on the belt.

b) A conveyor drive, composed of a gearmotor

and a starter (for example [<rf>]) attached to
the pulley of the conveyor belt. It has no
reverse operation and no speed regulation
(just stop/start through the starter).

c) A pneumatic diverter (such as [<ref>]) that

admits an on/off signal for selecting one out
of two lanes in the second segment of the
belt.

d) Two intelligent B/W cameras with

embedded processors with capturing and
basic image processing capabilities (for
example, [<ref>]). Each one can be triggered
to start the capture and provide two bits
output indicating the presence of a well
terminated part (00), a defective part (11), or
a not-known or

error status (01/10). The use of two identical
cameras is for providing a consensus
between both results and so to diminish the
probability of a recognition failure. Only one
of them will provide the final result to the
controller.

e) A PLC controller. For this case study we will
consider an out-of-catalog device in order to
augment heterogeneity and also illustrate the
typical reuse of old components in many
manufacturing environments. In our example
it is the modular Simatic S5-100U controller
[<ref>].

At this level, the devices are connected through a

heterogeneous network:

- Non-programmable sensors and actuators

(presence, drive, diverter) are connected
through an AS-i bus to the PLC (in the case of
the Simatic S5, this must be done through an
AS-i module [<ref>]).

- The controller is connected to the cameras as a

master in a Profibus-DP bus [<ref>] (a CP
5431 module for this PLC is needed [<ref>]).
This hard real-time bus will also be used for
connecting the field to the SCADA system.
Profibus classifies the devices connected to it
as masters or slaves (there can be several
masters, with a maximum of 32 devices if no
repeater is used). Masters can initiate
communication, but slaves can also transfer
data in a peer-to-peer fashion.

- The VS710 cameras chosen for this case of
study provide direct connection to Profibus-
DP, but for increasing heterogeneity, we will
consider their RS-232 connections instead. So,
we need a pair of Profibus-DP / RS-232
gateways (for instance, [<ref>]) that set the
cameras as slaves in Profibus.

The enterprise level will contain a number of

conventional PCs. One of them will include a
SCADA software. We will consider that all these PCs
share an Ethernet network, and the SCADA computer
will pass through to the field by means of a Ethernet /
Profibus-DP gateway [<ref>], being seen as a master
from the Profibus perspective.

Concerning the software, there are three
programmable devices in our example:

- Both intelligent cameras include an Intel 486

processor @ 100MHz [<ref>] with 16Mb of
main memory. They run MS-DOS 6.22
[<ref>]. The camera buffer can be dumped to
main memory through suitable calls to a
software library. The development is carried
out on a different computer (using Visual C++
6.0 [<ref>] if C or C++ languages are chosen)
and the binary files transferred to the
embedded processors via RS-232 or the other
available connections. Once the program is in
the camera, it operates autonomously.

- The PLC has a CPU with a well-defined

execution time for its instructions. It also
includes a ROM with a cyclic executive that
starts in each cycle by transferring an image of
all the inputs and outputs of the PLC to main

Figure <>

memory, follows by executing the program,
and ends by transferring back the input/output
data to the devices. The program can be
written in three modes. We are interested in
AWL [<ref>], which is a textual programming
language similar to assembly, with no real
number processing capabilities. The program
is developed in an external computer and
transferred to the PLC via a serial cable. Once
there, it can be stored in an EPROM. With
respect to the communication modules, the
AS-i module appears to the CPU as a set of
binary data in the input/output space, while the
Profibus-DP provides a number of predefined
functions that can be called for performing
basic SEND/RECEIVE operations.

- The PC in charge of running the SCADA

front-end will run a MS-Windows XP OS
[<ref>], which can be programmed in a variety
of languages. This computer will serve both as
a development computer (not only for their
own programs but also for compiling and
transferring programs to the PLC and the
cameras), and as an execution environment.
We will choose JAVA [<ref>] for
programming our front-end due to its
graphical capabilities and portability among
platforms. The Ethernet connection can be
accessed through socket interface [<ref>] and
a Profibus-DP library provided by the gateway
manufacturer.

Designing the Application with H
In the design of this application with the H language
we can distinguish three different modules, intended
for managing each of the programmable devices: a
PLC Control module, a SCADA Front-End module
and an Inspection module. The PLC Control module
will be in charge of properly managing the conveyor
actuators based on the readings of the proximity
sensor and the recognition performed by the cameras.
The Inspection module will reside in the cameras and
provide object recognition facilities. The SCADA
Front-End module will continuously retrieve
information from the whole system to be graphically
shown in the operator console, and detect possible
failure situations. Figs. <> show the structural
designs for these modules. Notice the object-oriented
inheritance for future reuse of the designs. The PLC
Control module has some hard-real time constraints in
the form of a cyclic task in charge of sequencing the
shop plant. Also notice that the SCADA Front-End
receives information from the plant asynchronously,
without hard time requirements (it also is able to act
on the plant to stop or start its operation under user
demand). No information depending on a given
hardware or software is needed, and thus the

portability and reusability of these structural designs
is maximum.

Figure <>

Module abstract structural design FieldDevice

 Description : "An abstract module that
encapsulates a general field device"

 Author : "The H Team"

 Data definitions
 enum DeviceStatus
{ok , stopped , failure} ;
 End data definitions

 Service GetStatus
 Characteristics : reentrant ;
 Priority : dynamic
 Outputs : DeviceStatus st ;
 Description : "Return the current
status of the device"
 End service GetStatus

End module structural design FieldDevice

Figure <>

Module abstract structural design
ControlDevice inherits from FieldDevice

 Description : "An abstract module that
encapsulates a general control field device"

 Author : "The H Team"

 Data definitions
 enum DeviceStatus
{ok , stopped , failure} ;
 End data definitions

 Service NumberOfDevices
 Characteristics : reentrant ;
 Priority : dynamic
 Outputs : long num ;
 Description : "Return the number of
devices controlled by this"
 End Service NumberOfDevices

 Service GetStatusOfDevice
 Characteristics : reentrant ;
 Priority : dynamic
 Inputs : long numdev ; // Index of
device to check, from 0
 Outputs : bool invaliddev ,
FieldDevice :: DeviceStatus st ;
 Description : "Return the current
status of the indicated device"
 End service GetStatusOfDevice

 Service GetStatusOfDevices
 Characteristics : reentrant ;
 Priority : dynamic
 Outputs :
sequence <FieldDevice :: DeviceStatus >;
 Description : "Return the current
status of all the devices controlled by
 this, including itself
at the end of the sequence"
 End service GetStatusOfDevices

 Service SuspendControl
 Priority : prioritized ;
 Description : "Suspend the execution of
the system controlled by this"
 End service SuspendControl

 Service ResumeControl
 Priority : prioritized ;
 Description : "Resume execution of the
system if it is in suspension"
 End service ResumeControl

End module structural design FieldDevice

Figure <>

Module structural design PLCControl inherits
from ControlDevice

 Description : "Control of the sensors and
actuators of a case of study shop floor
application"

 Author : "The H Team"

 Service MainControl
 Characteristics : monitor , permanent
absolute 500 milliseconds ;
 Priority : prioritized
 Description : "This service is a cyclic
hard-real time task in charge of checking
 the status of the
presence sensor and stop/start the conveyor
drive
 and the diverter as
necessary after consulting the Inspection
module"
 End service MainControl

End module structural design FieldControl

Figure <>

Module structural design Inspection inherits
from FieldDevice

 Description : "Inspection of parts to
decide if they are right or defective"

 Author : "The H Team"

 Data definitions
 enum InspectionResults
{ok , defective , error}
 End data definitions

 Service Inspect
 Priority : dynamic
 Outputs : InspectionResults result ;
 Description : "This service performs an
inspection of the part"
 End service Inspect

End module structural design Inspection

Figure <>

Module structural design SCADAFrontEnd

 Description : "Graphical Front-End for the
SCADA system"

 Author : "The H Team"

 Signal definitions

 signal PartDetected
 description : "Signalled when a new
part has arrived on the belt and
 the recognition
system has decided of which type it is"
 parameter :
Inspection :: InspectionResults newpartinsp ;
 end signal PartDetected

 End signal definitions

 Service GraphicalInterface
 Characteristics : monitor , permanent ;
 Priority : unprioritized ;
 Description : "This service is in
charge of creating and maintaining the"
 graphical interface for
user interaction"
 End service GraphicalInterface

 Service RefreshDevicesStatus
 Priority : dynamic ;

 Description : "Consult the current
status of the system and put it on the
 graphical front-end"
 End service RefreshDevicesStatus

 Service RefreshStatistics
 Priority : dynamic ;
 Description : "Put on the graphical
interface up-to-date statistics on the
 parts that the system has
processed"
 End service RefreshStatistics

 Service SuspendSystem
 Priority : prioritized ;
 Description : "Stop the whole system
temporarily"
 End service SuspendSystem

 Service ResumeSystem
 Priority : prioritized ;
 Description : "Resume the whole system
activity"
 End service ResumeSystem

 Event handler PartDetected
 Priority : 10
 Description : "Adds one to the correct
parts or to the defective parts, or increments
 the number of failures (in
that case it also stops the system), depending
 on the type of the part
detected"
 End event handler PartDetected

End module structural design Inspection

The next step is to design the codifications for

these structures. This is when heterogeneity must be
dealt with for the first time. On the one hand, specific
programming languages must be selected. We will
choose JAVA for the SCADA Front-End, C for the
embedded camera processors, and AWL for the
Simatic PLC. On the other hand, some information on
the particular platforms that are needed for executing
the codifications may be included. Notice that
through the use of H-atoms, most of the
portability/heterogeneity parts of the codification will
still remain portable. Figs. <> show some fragments
of the codifications for the three modules. The
Inspection module includes active replication for
merging the results of both cameras. The PLC
MainControl service is deportabilized by the CP 2433
module (the one that provides access to the AS-i bus
from the PLC), since it is used to access field devices
that do not contain modules. However, the CP 5431
needed in the PLC for communicating through the
Profibus does not deportabilize the codification: it is
used as a communication platform between
codifications, and thus, it could be substituted in the
future without compromising the logics of fig. <>.

Figure <>

Module codification design PLCControlS5 implements PLCControl

 Description : "Codification of the PLC Control module for executi ng in a Simatic S5 PLC"

 Author : "The H Team"

 Codification language : step - 5- awl

 Internal status
 {-{
 DB2

 KY = 1 #state of the system 1 -> ok, 0->failure, 2 -> stopped#

 BE
 }-}
 End internal status

 Startup logic // This logic will be dumped to the OB 21 block of the S5 by the H tools
 {-{
 S M 1.0
 S M 1.1
 R M 2.0
 R M 2.1
 ...
 = A 0.1 #start moving the conveyor#
 }-}
 End startup logic

 Service MainControl
 // This logic will be dumped to OB 1, which is exec uted cyclically by the S5
 {-{
 C DB 2
 ...
 #calling the inspection service . Results are stored in two marks#
 #_H-atom(Inspection,Inspection,"M 1.0,M 1.1")_#
 U M 1.0
 U M 1.1
 = A 0.2 #it moves the diversion device to 1 if the result is 11, or 0
otherwise#
 O (
 U M 1.0
 UN M 1.1
)
 O (
 UN M 1.1
 U M 1.0
) #result is 01 or 10, that is, a failure in the system#
 T BI 1
 = A 0.1 #the conveyor is activated if system is ok#
 ...
 #The rest of the code#
 }-}
 Deportabilization : SimaticPLC // Since the codification cannot access the non-pro grammable
devices without it
 End service MainControl

 // The other services written here …

End module codification design PLCControlS5

Figure <>

Module codification design VS710CameraInspector implements Inspection

 Description : "Codification of the inspection logic for the VS710 camera"

 Author : "The H Team"

 Codification language : ansi - c

 Service Inspect , timing 10 milliseconds .. 100 milliseconds
 {-{
 // Accesses to the camera
 ...
 // Dump image into main memory
 ...
 // Run recognition process
 ...
 }-}
 Replication :
 {-{
 int res1 =result [0]; // result of the service as produced by the first r eplica
 int res2 =result [1]; // the result produced by the second replica

 if (result [0]== result [1])
 result =result [0]; // both replicas have returned the same
 else
 {
 // If one of the replicas does not work, take the o ther
 if (result [0]== Inspection :: error)
 result =result [1];
 else if (result [1]== Inspection :: error)
 result =result [0];
 else // both replicas disagree; take the worst case
 result =Inspection :: defective ;
 }
 }-}
 End service MainControl

 // The other services written here

End module codification design VS710CameraInspector

Figure <>

Module codification design JAVASCADAFrontEnd implements SCADAFrontEnd

 Description : "Codification of the graphical front-end in JAVA wi th swing"

 Author : "The H Team"

 Internal status :
 {-{
 int num_malfunctions ;
 int num_detected_parts ;
 }-}
 end internal status

 Startup logic
 {-{
 num_malfunctions =0; num_classA =0;
 num_classB =0;
 #_H-atom(Critical-zone-create,"1")_#
 }-}
 end startup logic

 Codification language : java - 2.0

 // The other services written here

 Event handler PartDetected
 // a new part detected and potentially a stop
 {-{
 #_H-atom(Request-synchronous-static,PLCControl,GetStatusOfDevice,"motor-
drive,error,result")_#
 if (!error)
 {
 if (result! =ok)
 { #_H-atom(Critical-zone-enter,"1")_#
 num_malfunctions ++;
 #_H-atom(Critical-zone-leave,"1")_#
 }
 else
 { #_H-atom(Critical-zone-enter,"1")_#
 num_detected_parts ++;
 #_H-atom(Critical-zone-leave,"1")_#
 }
 }
 //Refresh graphical front-end…
 }-}
 End event handler

End module codification design JAVASCADAFrontEnd

Table <>
Particular Platform General

Platform
Description

SimaticPLC Hardware
Platform

The Simatic S5-100U (CPU 103) PLC basic hardware and operating system. Also
the CP2433_ASi module for accessing the AS-i devices.

SimaticPLCTiming Real-Time
platform

Hardware and software support for the real-time features of the simatic PLC.

CP5431_Profibus Communications
Platform

Simatic module for communications through Profibus-DP

SimaticProfibus_Broadcast Fault-Tolerance
Platform

A software library for performing broadcast operations from the Simatic-Profibus
side, needed in the active replication of the intelligent cameras.

VS710Camera Hardware
Platform

The hardware of the VS710 intelligent camera, including the processor, memory,
and internal connection to the CCD sensor.

MSDOS622 Execution The operating system for the VS710 camera embedded processor, including the

Platform software libraries for accesing the camera.
RS232_MSDOS622 Communication

Platform
A software communication platform for issue service and event requests through
an RS232 connection on a MS-DOS 6.22 OS.

PC Hardware
Platform

The conventional PC in charge of the SCADA front-end.

JAVA_VM Execution
Platform

The JAVA Virtual Machine for executing the Front-End.

EthernetProfibusGateway Comunication
Platform

Hardware and software platforms for providing support for Profibus
communications through Ethernet gateway.

In addition to the design of modules and

codifications, the particular platforms involved
in the application must be enumerated for an
implementation to be produced. Since the “.ppl”
files are really simple, we rather give a table
with the platforms of our example (table <>).

The application can now be designed, as
shown in fig. <>. A possible implementation is
shown in fig. <>.

Figure <>

Application CaseStudyApplication

 Description : "Design of the application
from a structural point of view"

 Author : "The H Team"

 Modules : PLCControl , Inspection ,
SCADAFrontEnd

End application CaseStudyApplication

Figure <>

Implementation OurImplementation for
CaseStudyApplication

 Description : "An implementation that uses
the codifications given previously"

 Author : "The H Team"

 Platforms :
 AnOldS5 is SimaticPLC ,
 S5Timing is SimaticPLCTiming ,
 AProfibusModule is CP5431_Profibus ,
 BuiltinBroadcast is
SimaticProfibus_Broadcast ,
 Camera1, Camera2 are VS710Camera ,
 Copy1OfDOS, Copy2OfDOS are MSDOS622,
 CRS232Library1, CRS232Library2 are
RS232_MSDOS622,
 EnterprisePC1 is PC ,
 OurCopyOfJAVAVM is JAVA_VM,
 EPGateway is EthernetProfibusGateway

 Support :
 AnOldS5 supports S5Timing ,
AProfibusModule , BuiltinBroadcast ;
 Camera1 supports Copy1OfDOS ,
CRS232Library1 ;
 Camera2 supports Copy2OfDOS ,
CRS232Library2 ;
 EnterprisePC1 supports
OurCopyOfJAVAVM, EPGateway ;

 Fault - tolerance :
 Inspection uses BuiltinBroadcast for
active replication ;

 Deployment :
 PLCControlS5 deployed on AnOldS5 order
2 pause user logging on;
 JAVASCADAFrontEnd deployed on
OurCopyOfJAVAVM order 3 pause user ;
 VS710CameraInspector replica 0
deployed on Camera1 order 1 ;
 VS710CameraInspector replica 1
deployed on Camera2 order 0 ;

Implementation, Execution,
Debugging, and Maintainance with
the H Tools
From the designs proposed previously the H
tools can produce implementations. First of all,
the implementation file (fig. <>) serves as an
index to collect all the modules and
codifications involved in the application. The H-
apc tool is intended to produce the source code
of complete programs from the codifications,
including code for communications and support
of the H-atoms (for this case of study, only the
SCADA Front-End and the Inspection modules’
codifications could be processed by our current
implementation of the H-apc). The source code
produced from each codification must be
compiled/linked by some existing software
related to the codification language and to the
execution/hardware platform where the
module’s codification will be run. For example,
for the Inspection modules’ codifications, the
source code must be compiled/linked by MS
Visual C++ 6.0 for constructing a console
application suitable for MS-DOS 6.22; for the
SCADA Front-End, the JAVA compiler must be
executed to produce JAVA bytecode programs.
Once the codifications have been transformed
into executable, independent programs, they
must be transferred to the corresponding
execution/hardware platforms. In the future we
plan to develop an automatic tool to perform
this deployment, but currently we do it
manually.

The second H tool to use is the H-apx. It is in
charge of launching the codifications by
following the sequence order specified in the
implementation file. Our current version would
be able to do this from a centralized computer in
a network using TCP/IP communications.
Further extensions are needed to include remote
launching in PLCs.

Once the application is terminated (which
can be commanded also from the H-apx), the
debugging results can be collected and passed to
the H-apl. In our current implementation, H-apx
is in charge of collecting all this information
and producing a single log file that is then
passed to the H-apl. A typical output of the H-
apl is shown in fig. <> for an example of robotic
application.

Finally, all the files involved in the
application can be stored in our BABEL web
site (currently they are compacted into a single
file) for maintainance. This site also provides

facilities to check some dependency problems
between modules and the satisfaction of real-
time requirements.

Figure <>

Conclusions and Future Work
We have presented in this paper a meta-
programming framework for coping efficiently
with heterogeneity in the shop floor (as long as
the shop floor includes programmable devices).
We have developed a number of code
generators for H in the last years, and this can
be extended with an unbounded number of
generators in the future. Basically, the H tool
that is most affected by the inclusion of new
particular platforms and codification languages
is the application constructor H-apc. Thus we
have developed it based on several templates
that can be easily changed and added to the tool,
in most cases without recompiling it. Thus,
heterogeneity in the future is guaranteed to be
coped properly.

Some features that are not dealt with
currently in the H metalanguage itself and may
be subjected to further work in the future are:
migration mechanisms for codifications [<ref>],
higher levels of specification/design (for

example, layers over H that are specialized in
particular domains: manufacturing, robotics,
etc.), more complex and mathematically
grounded validation mechanisms, non-textual
codification languages (for example G of
Labview [<ref>], statecharts [<refs>], etc.),
reflexive properties (to handle the structure of
the application from within the application),
automatic re-launching of failed codifications
with resuming of previous internal status,
integrated development environments (IDEs)
with facilities for managing all the stages of the
design/implementation/testing of applications
and assistants for application templates, more
sophisticated asynchronous communications
between modules, exception handling at the
design level, etc.

Appendix – H basic syntax

In this appendix we provide two figures that
include the syntax of the basic elements of the H
metalanguage.

Figure <>

list_of_ids := <identifier> | <identifier> , /list_of_ids/

HDL_data_type := <OMG’s IDL data type definition>

HDL_data := /HDL_data_type/ <data identifier> [range <minimum value that can have the

data> … <maximum value> units <units for these values: a text
abbreviation, usually>]

list_of_HDL_data := /HDL_data/ | /HDL_data/ , /list_of_HDL_data/

list_of_HDL_defs := /HDL_data_type/ ; | /HDL_data_type/ ; /list_of_HDL_defs/

time_unit := year | day | hour | minute | second | tenth | hundredth | millisecond |

microsecond | nanosecond

time_units := [/time_unit/ | /time_unit/ s]

time_value := <an integer> /time_units/ | unspecified

timing_range := /time_value/ .. /time_value/

signal_def := signal <signal name>
 description: “description and purpose of the signal”
 [parameter: /HDL_data_type/]
 end signal <signal name>

list_of_signals_defs := /signal_def/ | /signal_def/ /list_of_signals_defs/

signal_id := [<module name> ::]<signal name>

serv_char := reentrant | monitor | permanent [[absolute] /time_value/]

list_of_serv_chars := /service_char/ ; | /service_char/ , /list_of_serv_chars/

handler_prio_level := unprioritized | prioritized | <positive integer>

service_prio_level := /handler_prio_level/ | dynamic

list_of_paths := <complete path of a file> ; | <complete path of a file> ,

/list_of_paths/

codif_language := iso-cpp | ansi-c | java-2.0 | i8051-asm | step-5-awl …

general_platform := hardware | execution | communication | real-time | fault-tolerance

repeatable_module := <module name> [repeated { <identifier> , /list_of_ids/ }]

list_of_repmodules := /repeatable_module/ | /repeat able_module/ , /list_of_repmodules/

platform_instance := ([,] <particular platform instance>)+ [is | are] <platform name>

list_of_platform_instances := /platform_instance/ | /platform_instance/ ,

/list_of_platform_instances/

platform_support := <platform instance name> supports (<platform instance name> [,])+

list_of_supports := /platform_support/ ; | /platform_support/ ; /list_of_supports/

FT := <module name> uses <particular platform instance (fault-tolerance)> for [active

replication | passive replication [with timeout /time_value/]]

list_of_FTs := /FT/ ; | /FT/ , /list_of_FTs/

codif_deployment := [repetition <identifier> of] <codification name> [replica

<positive integer>] deployed on <particular platform instance
(hardware or execution)> [priority <positive integer>] [order
<positive integer>] [pause [/time_value/ | user]] [logging
[on | off]] [cl-arguments “text with command line arguments for
the executable program”]

list_of_deployments := /codif_deployment/ ; | /codif_deployment/ ;

/list_of_deployments/

Table <>

Syntax Symbol Use

[] Optional element (zero or one instances of the element inside the square brackets)

|

Separates exclusive options. If used inside a square bracket construct, the square brackets
change their meaning to “exactly one option of the elements inside the brackets”. If those
square brackets are appended with a ‘+’ (plus) symbol, then more than one of the inside
elements can be selected (but at most, one of each).

…
Represents an unbounded number of options, or more precisely, a list of elements that can be
extended in the future.

()+ Indicates one or more repetitions of the element inside the parentheses.

{} Indicates zero or more repetitions of the element inside the curly braces.

// The text inside the slashes is a non-terminal defined in fig. <>.

<> The text inside the angle brackets is an identifier.

keyword A keyword of the metalanguage. Keywords compound of more than one word exist.

Code
Piece of code written in some codification language. It must be enclosed in {-{ … }-} in
order to isolate it from the rest of the metalanguage.

//… A comment that ends with the line.

/* … */ A comment that does not end with the line. It cannot be nested with other comments.

References

[CIM] J.A. Fernández-Madrigal, C. Galindo, J. González, E. Cruz, and A. Cruz, "A Software Engineering
Approach for the Development of Heterogeneous Robotic Applications", Robotics and Computer-
Integrated Manufacturing (to appear).

[XML] E. R. Harold. XML Bible, 1999, Hungry Minds, Incorporated.

[passive and active replicas] ?

[active objects] ?

[OMG IDL] http://www.omg.org/

[OMG CORBA] Schmidt D. ACE+TAO Corba Homepage, 2005.
http://www.cs.wustl.edu/~idt/TAO.html

[acyclic graph]M.R. Trudeau, Introduction to Graph Theory, Dover Publications, 1993.

[BABEL website] Fernandez-Madrigal J.A. The BABEL development system for integrating
heterogeneous robotic software. Tech. rep. University of Málaga, 2003.
http://www.babel.isa.uma.es/babel/

[migration mechanism] ?

[labview] http://www.ni.com/labview/

[statechart] Harel D. StateCharts. A Visual Formalism for complex Systems. In Science of Computer
Programming 1987, vol. 8 1-4.

[ebnf] A summary for the EBNF Notation. Document ISO/IEC 14977 : 1996(E). Accesible online from
http://www.cl.cam.ac.uk/~mgk25/iso-ebnf.html

[photoelectric sensor] Diffusive sensor with background suppression. DataSheet RL28-8-H-400-RT-
B3B/73c. Pepperl + Fuchs. http://www.am.pepperl-fuchs.com/pdf/documents/rl28-8-h-400-rt-b3b-73c-
datasheet.pdf

[conveyor gearmotor and starter] MOVIMOT. http://www.sew-eurodrive.com

[pneumatic diverter] Kuhnke Airbox. http://www.kuhnkeairbox.com/index.php

[SV710 cameras] SIMATIC VS 710. Quick Reference Guide A5E00032597-02 Edition 11/2001

[Simatic S5-100 U] S5-100U. Programmable Controller. System Manual. EWA 4NEB 812 6120-02a

[Profibus-DP] PROFIBUS, System Description. Version Oct. 2002, Order Number 4.002

[CP5431] Siemens Automation & Drives Product Type AS-Interface Master for SIMATIC S5 Order No.
6GK1 243-3SA00

[Profibus-RS-232 gateway] PROFIBUS - RS232 Gateway DSPI_RS, SHAUF
http://www.schauf.haan.de

[Ethernet-Profibus-dp] APP-ESP-GTW applicom® GATEway Profibus to Ethernet or Serial.
Http://woodhead.com

[Intel] http://www.intel.com

[MS-dos] http://www.microsoft.com

[protected—mode for accessing all the memory] J. Crow. The MS-DOS Memory Environment. ACM
SIGICE Bulleting, Vol 21, nº3, Jan 1996.

[Visual C++] D.J. Kruglinski. Inside Visual C++. Microsoft 1997.

[AWL] S5-100U. Programmable Controller. System Manual. EWA 4NEB 812 6120-02a

[WXP] Microsoft homepage (2007). http://www.microsoft.com

[Java] Sun’s JAVA homepage (2007). http://www.sun.com/java/

[socket interface] Taylor E. TCP/IP complete. McGraw-Hill Professional, 1998.

[AS-i] http://www.as-interface.net/

