Monthly Archives: April 2015

You are browsing the site archives by month.

Interesting paper on fault tolerance applied to robotics, with good survey of the subject

D. Crestani, K. Godary-Dejean, L. Lapierre, Enhancing fault tolerance of autonomous mobile robots, Robotics and Autonomous Systems, Volume 68, June 2015, Pages 140-155, ISSN 0921-8890, DOI: 10.1016/j.robot.2014.12.015.

Experience demonstrates that autonomous mobile robots running in the field in a dynamic environment often breakdown. Generally, mobile robots are not designed to efficiently manage faulty or unforeseen situations. Even if some research studies exist, there is a lack of a global approach that really integrates dependability and particularly fault tolerance into the mobile robot design.
This paper presents an approach that aims to integrate fault tolerance principles into the design of a robot real-time control architecture. A failure mode analysis is firstly conducted to identify and characterize the most relevant faults. Then the fault detection and diagnosis mechanisms are explained. Fault detection is based on dedicated software components scanning faulty behaviors. Diagnosis is based on the residual principle and signature analysis to identify faulty software or hardware components and faulty behaviors. Finally, the recovery mechanism, based on the modality principle, proposes to adapt the robot’s control loop according to the context and current operational functions of the robot.
This approach has been applied and implemented in the control architecture of a Pioneer 3DX mobile robot.

Novelty detection as a way for enhancing learning capabilities of a robot, and a brief but interesting survey of motivational theories and their difference with attention

Y. Gatsoulis, T.M. McGinnity, Intrinsically motivated learning systems based on biologically-inspired novelty detection, Robotics and Autonomous Systems, Volume 68, June 2015, Pages 12-20, ISSN 0921-8890, DOI: 10.1016/j.robot.2015.02.006.

Intrinsic motivations play an important role in human learning, particularly in the early stages of childhood development, and ideas from this research field have influenced robotic learning and adaptability. In this paper we investigate one specific type of intrinsic motivation, that of novelty detection and we discuss the reasons that make it a powerful facility for continuous learning. We formulate and present one original type of biologically inspired novelty detection architecture and implement it on a robotic system engaged in a perceptual classification task. The results of real-world robot experiments we conducted show how this original architecture conforms to behavioural observations and demonstrate its effectiveness in terms of focusing the system’s attention in areas that are potential for effective learning.

On the history of IEEE Transactions on Robotics and Automation, ICRA, and others

Sabanovic, S.; Milojevic, S.; Asaro, P.; Francisco, M., Robotics Narratives and Networks [History], Robotics & Automation Magazine, IEEE , vol.22, no.1, pp.137,146, March 2015, DOI: 10.1109/MRA.2014.2385564.

Somewhere around 1983, maybe late 1982, there was talk beginning about doing something more formal within IEEE that dealt with robotics and automation. Informally, activity was getting started through the Control Society,…also Systems, Man and Cybernetics, which obviously makes a lot of sense with the telerobotics things and a few others. But we wanted to build a more permanent home for it, so there was one of the first meetings. George Saridis chaired the meeting. I know George Bekey was there, Tony Bejczy, Lou Paul, probably another half dozen people.

Abstract data-type for exchanging information in real-time systems, prioritizing the access to newest data rather than to oldest

Dantam, N.T.; Lofaro, D.M.; Hereid, A.; Oh, P.Y.; Ames, A.D.; Stilman, M., The Ach Library: A New Framework for Real-Time Communication, Robotics & Automation Magazine, IEEE , vol.22, no.1, pp.76,85, March 2015, DOI: 10.1109/MRA.2014.2356937.

Correct real-time software is vital for robots in safety-critical roles such as service and disaster response. These systems depend on software for locomotion, navigation, manipulation, and even seemingly innocuous tasks such as safely regulating battery voltage. A multiprocess software design increases robustness by isolating errors to a single process, allowing the rest of the system to continue operation. This approach also assists with modularity and concurrency. For real-time tasks, such as dynamic balance and force control of manipulators, it is critical to communicate the latest data sample with minimum latency. There are many communication approaches intended for both general-purpose and real-time needs [9], [13], [15], [17], [19]. Typical methods focus on reliable communication or network transparency and accept a tradeoff of increased message latency or the potential to discard newer data. By focusing instead on the specific case of real-time communication on a single host, we reduce communication latency and guarantee access to the latest sample. We present a new interprocess communication (IPC) library, Ach which addresses this need, and discuss its application for real-time multiprocess control on three humanoid robots (Figure 1). (Ach is available at The name Ach comes from the common abbreviation for the motor neurotransmitter Acetylcholine and the computer networking term ACK.).

Reinforcement learning used for an adaptive attention mechanism, and integrated in an architecture with both top-down and bottom-up vision processing

Ognibene, D.; Baldassare, G., Ecological Active Vision: Four Bioinspired Principles to Integrate Bottom–Up and Adaptive Top–Down Attention Tested With a Simple Camera-Arm Robot, Autonomous Mental Development, IEEE Transactions on , vol.7, no.1, pp.3,25, March 2015. DOI: 10.1109/TAMD.2014.2341351.

Vision gives primates a wealth of information useful to manipulate the environment, but at the same time it can easily overwhelm their computational resources. Active vision is a key solution found by nature to solve this problem: a limited fovea actively displaced in space to collect only relevant information. Here we highlight that in ecological conditions this solution encounters four problems: 1) the agent needs to learn where to look based on its goals; 2) manipulation causes learning feedback in areas of space possibly outside the attention focus; 3) good visual actions are needed to guide manipulation actions, but only these can generate learning feedback; and 4) a limited fovea causes aliasing problems. We then propose a computational architecture (“BITPIC”) to overcome the four problems, integrating four bioinspired key ingredients: 1) reinforcement-learning fovea-based top-down attention; 2) a strong vision-manipulation coupling; 3) bottom-up periphery-based attention; and 4) a novel action-oriented memory. The system is tested with a simple simulated camera-arm robot solving a class of search-and-reach tasks involving color-blob “objects.” The results show that the architecture solves the problems, and hence the tasks, very efficiently, and highlight how the architecture principles can contribute to a full exploitation of the advantages of active vision in ecological conditions.