Category Archives: Computer Science

High performance robotic computing (HPRC) vs. High performance computing, and its application to multirobot systems

Leonardo Camargo-Forero, Pablo Royo, Xavier Prats, Towards high performance robotic computing, Robotics and Autonomous Systems, Volume 107, 2018, Pages 167-181 DOI: 10.1016/j.robot.2018.05.011.

Embedding a robot with a companion computer is becoming a common practice nowadays. Such computer is installed with an operatingsystem, often a Linux distribution. Moreover, Graphic Processing Units (GPUs) can be embedded on a robot, giving it the capacity of performing complex on-board computing tasks while executing a mission. It seems that a next logical transition, consist of deploying a cluster of computers among embedded computing cards. With this approach, a multi-robot system can be set as a High Performance Computing (HPC) cluster. The advantages of such infrastructure are many, from providing higher computing power up to setting scalable multi-robot systems. While HPC has been always seen as a speeding-up tool, we believe that HPC in the world of robotics can do much more than simply accelerating the execution of complex computing tasks. In this paper, we introduce the novel concept of High Performance Robotic Computing — HPRC, an augmentation of the ideas behind traditional HPC to fit and enhance the world of robotics. As a proof of concept, we introduce novel HPC software developed to control the motion of a set of robots using the standard parallel MPI (Message Passing Interface) library. The parallel motion software includes two operation modes: Parallel motion to specific target and swarm-like behavior. Furthermore, the HPC software is virtually scalable to control any quantity of moving robots, including Unmanned Aerial Vehicles, Unmanned Ground Vehicles, etc.

The security problems of ROS

Bernhard Dieber, Benjamin Breiling, Sebastian Taurer, Severin Kacianka, Stefan Rass, Peter Schartner, Security for the Robot Operating System, Robotics and Autonomous Systems,
Volume 98, 2017, Pages 192-203, DOI: 10.1016/j.robot.2017.09.017.

Future robotic systems will be situated in highly networked environments where they communicate with industrial control systems, cloud services or other systems at remote locations. In this trend of strong digitization of industrial systems (also sometimes referred to as Industry 4.0), cyber attacks are an increasing threat to the integrity of the robotic systems at the core of this new development. It is expected, that the Robot Operating System (ROS) will play an important role in robotics outside of pure research-oriented scenarios. ROS however has significant security issues which need to be addressed before such products should reach mass markets. In this paper we present the most common vulnerabilities of ROS, attack vectors to exploit those and several approaches to secure ROS and similar systems. We show how to secure ROS on an application level and describe a solution which is integrated directly into the ROS core. Our proposed solution has been implemented and tested with recent versions of ROS, and adds security to all communication channels without being invasive to the system kernel itself.

On the problem of the future limits of information storage

Cambria, E., Chattopadhyay, A., Linn, E. et al, Storages Are Not Forever, Cogn Comput (2017) 9: 646, DOI: 10.1007/s12559-017-9482-4.

Not unlike the concern over diminishing fossil fuel, information technology is bringing its own share of future worries. We chose to look closely into one concern in this paper, namely the limited amount of data storage. By a simple extrapolatory analysis, it is shown that we are on the way to exhaust our storage capacity in less than two centuries with current technology and no recycling. This can be taken as a note of caution to expand research initiative in several directions: firstly, bringing forth innovative data analysis techniques to represent, learn, and aggregate useful knowledge while filtering out noise from data; secondly, tap onto the interplay between storage and computing to minimize storage allocation; thirdly, explore ingenious solutions to expand storage capacity. Throughout this paper, we delve deeper into the state-of-the-art research and also put forth novel propositions in all of the abovementioned directions, including space- and time-efficient data representation, intelligent data aggregation, in-memory computing, extra-terrestrial storage, and data curation. The main aim of this paper is to raise awareness on the storage limitation we are about to face if current technology is adopted and the storage utilization growth rate persists. In the manuscript, we propose some storage solutions and a better utilization of storage capacity through a global DIKW hierarchy.