Category Archives: Uncategorized

SLAM based on submap joining that achieves linear cost through a novel choice of the reference frame of each submap, and an interesting related works on map joining, i.e., considering submaps as observations

Liang Zhao, Shoudong Huang, Gamini Dissanayake, Linear SLAM: Linearising the SLAM problems using submap joining, Automatica, Volume 100, 2019, Pages 231-246, DOI: 10.1016/j.automatica.2018.10.037.

The main contribution of this paper is a new submap joining based approach for solving large-scale Simultaneous Localization and Mapping (SLAM) problems. Each local submap is independently built using the local information through solving a small-scale SLAM; the joining of submaps mainly involves solving linear least squares and performing nonlinear coordinate transformations. Through approximating the local submap information as the state estimate and its corresponding information matrix, judiciously selecting the submap coordinate frames, and approximating the joining of a large number of submaps by joining only two maps at a time, either sequentially or in a more efficient Divide and Conquer manner, the nonlinear optimization process involved in most of the existing submap joining approaches is avoided. Thus the proposed submap joining algorithm does not require initial guess or iterations since linear least squares problems have closed-form solutions. The proposed Linear SLAM technique is applicable to feature-based SLAM, pose graph SLAM and D-SLAM, in both two and three dimensions, and does not require any assumption on the character of the covariance matrices. Simulations and experiments are performed to evaluate the proposed Linear SLAM algorithm. Results using publicly available datasets in 2D and 3D show that Linear SLAM produces results that are very close to the best solutions that can be obtained using full nonlinear optimization algorithm started from an accurate initial guess. The C/C++ and MATLAB source codes of Linear SLAM are available on OpenSLAM.

Optimization algorithms inspired in chemical reactions

Nazmul Siddique, Hojjat Adeli, Nature-Inspired Chemical Reaction Optimisation Algorithms, Cognitive Computation, Volume 9, Issue 4, pp 411–422, DOI: 10.1007/s12559-017-9485-1.

Nature-inspired meta-heuristic algorithms have dominated the scientific literature in the areas of machine learning and cognitive computing paradigm in the last three decades. Chemical reaction optimisation (CRO) is a population-based meta-heuristic algorithm based on the principles of chemical reaction. A chemical reaction is seen as a process of transforming the reactants (or molecules) through a sequence of reactions into products. This process of transformation is implemented in the CRO algorithm to solve optimisation problems. This article starts with an overview of the chemical reactions and how it is applied to the optimisation problem. A review of CRO and its variants is presented in the paper. Guidelines from the literature on the effective choice of CRO parameters for solution of optimisation problems are summarised.

Application of deep learning and reinforcement learning to an industrial process, with a gentle introduction to both and a clear explanation of the process and decisions made to build the whole control system

Johannes Günther, Patrick M. Pilarski, Gerhard Helfrich, Hao Shen, Klaus Diepold, Intelligent laser welding through representation, prediction, and control learning: An architecture with deep neural networks and reinforcement learning, Mechatronics, Volume 34, March 2016, Pages 1-11, ISSN 0957-4158, DOI: 10.1016/j.mechatronics.2015.09.004.

Laser welding is a widely used but complex industrial process. In this work, we propose the use of an integrated machine intelligence architecture to help address the significant control difficulties that prevent laser welding from seeing its full potential in process engineering and production. This architecture combines three contemporary machine learning techniques to allow a laser welding controller to learn and improve in a self-directed manner. As a first contribution of this work, we show how a deep, auto-encoding neural network is capable of extracting salient, low-dimensional features from real high-dimensional laser welding data. As a second contribution and novel integration step, these features are then used as input to a temporal-difference learning algorithm (in this case a general-value-function learner) to acquire important real-time information about the process of laser welding; temporally extended predictions are used in combination with deep learning to directly map sensor data to the final quality of a welding seam. As a third contribution and final part of our proposed architecture, we suggest that deep learning features and general-value-function predictions can be beneficially combined with actor–critic reinforcement learning to learn context-appropriate control policies to govern welding power in real time. Preliminary control results are demonstrated using multiple runs with a laser-welding simulator. The proposed intelligent laser-welding architecture combines representation, prediction, and control learning: three of the main hallmarks of an intelligent system. As such, we suggest that an integration approach like the one described in this work has the capacity to improve laser welding performance without ongoing and time-intensive human assistance. Our architecture therefore promises to address several key requirements of modern industry. To our knowledge, this architecture is the first demonstrated combination of deep learning and general value functions. It also represents the first use of deep learning for laser welding specifically and production engineering in general. We believe that it would be straightforward to adapt our architecture for use in other industrial and production engineering settings.