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Abstract— This work aims at improving real-time motion
control and dead-reckoning of wheeled skid-steer vehicles by
considering the effects of slippage, but without introducing the
complexity of dynamics computations in the loop. This traction
scheme is found both in many off-the-shelf mobile robots due
to its mechanical simplicity and in outdoor applications due to
its maneuverability. In previous works, we reported a method
to experimentally obtain an optimized kinematic model for
skid-steer tracked vehicles based on the boundedness of the
Instantaneous Centers of Rotation (ICRs) of treads on the
motion plane. This paper provides further insight on this
method, which is now proposed for wheeled skid-steer vehicles.
It has been successfully applied to a popular research robotic
platform, Pioneer P3-AT, with different kinds of tires and
terrain types.

I. INTRODUCTION

Wheeled skid-steering drive mechanisms are found in

many all-terrain vehicles, such as loaders, farm machinery,

mining and military. This traction scheme is also useful for

off-road mobile robots [1], with field applications such as

planetary exploration [2], land-mine detection [3] and rescue

[4]. Moreover, commercial robotic research platforms also

employ this locomotion system [5].

Steering is based on controlling the relative velocities of

the left and right side drives, similarly to differential drive

wheeled vehicles. However, since all wheels are aligned with

the longitudinal axis of the vehicle, turning requires wheel

slippage. This locomotion system functions like that of a

tracked vehicle. Tracked locomotion usually provides better

traction, but it is mechanically more complex [6].

Wheeled skid-steering presents two major advantages over

alternative wheel configurations, such as Ackerman or axle-

articulated. First, it is simple and robust in mechanical

terms. Second, it provides better manoeuverability, including

zero-radius turning, using only the components needed for

straight-line motion [2].

However, this locomotion scheme poses special difficulties

when addressing motion control and odometry. Skid-steering

kinematics is not straightforward, since it is not possible to

predict the exact motion of the vehicle only from its control

inputs. Thus, pure rolling and no-slip assumptions considered

in kinematic models for non-holonomic wheeled vehicles do

not apply in this case.

Nevertheless, we find that scarce work has been reported

on this problem. Additional internal sensor, such as gyro-

scopes [7], inertial units [8] or a small passive trailer with

encoders [9] can be applied to detect heading changes that

are not sensed by the motor encoders. Still, an effective kine-

matic model is necessary to perform on-board computations

for dead-reckoning and motion control in the short term.

Some authors have studied stability of wheeled skid-

steering with non-linear control techniques by explicitly

considering dynamics and drive models [10] [11]. Moreover,

kinematics has been addressed in some works as the relation

of linear and angular velocities with the position of the

vehicle [12] [13]. However, these do not consider major skid

effects, which arise at a lower level, in the relation between

drive velocities and vehicle velocities.

A kinematic model that relates to identification of slip

parameters from actual inertial readings was proposed in [14]

for velocity control of tracked vehicles. For wheeled skid-

steering, on-line adaptive control has been considered for

estimation of tire/ground friction of a simplified dynamic

model [15].

The kinematic relation is explicitly expressed by [8] as

a terrain-dependent 3 × 2 matrix of constant coefficients.

This matrix does not only capture wheel skid but also tire

pressure differences and transmission inaccuracies, although

no physical meaning is given to its elements. A custom-made

caster wheel trailer is used to measure the actual velocities

in order to derive the coefficients with linear regression

techniques.

Kinematic equivalences between skid-steering and differ-

ential drive vehicles have been proposed for tracked vehi-

cles. A simple experiment to directly obtain a symmetric

model was presented in [16]. Moreover, constant kinematic

parameters are derived in [17] as optimized values for

the Instantaneous Centers of Rotation (ICRs) of treads on

the plane by using laser scan-matching motion estimations.

These correspond to the position of ideal differential drive

wheels for a particular terrain. This is based on the fact that

positions of tread ICRs are dynamics-dependent, but they

lie within a bounded area at moderate speeds. Kinematic

identification also incorporates fine-tuning for misalignments

and other mechanical inaccuracies.

This paper presents further work on the experimental

ICR kinematic method, which is now proposed for wheeled

skid-steer vehicles. It has been applied to Pioneer P3-AT, a

commercial platform widely used as a test-bed for robotics

research. For instance, a fuzzy path tracker [12] and inde-

pendent control for each wheel to reduce odometry errors

[18] have been reported.

The major contributions presented by this paper are the
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following:

• A geometric interpretation of the kinematic matrix in

[8] based on the geometric analogy with an ideal

differential drive model.

• An easy to reproduce experimental identification

method based on external sensor motion estimation and

Genetic Algorithms to derive an approximate kinematic

model for wheeled skid-steer vehicles.

• A kinematic analysis of the Pioneer P3-AT robot.

Configuration parameters of the manufacturer’s implicit

kinematic model are related to the proposed method.

• Dead reckoning results obtained from the application of

the experimental model with different wheel and terrain

configurations.

Following this introduction, section 2 establishes kine-

matic analogies of skid-steering with ideal differential drive.

Section 3 presents an experimental procedure for kinematics

identification with external sensors. Section 4 describes the

application to the P3-AT mobile robot as well as validation

experiments. Section 5 is devoted to conclusions and ideas

for future work. Finally, acknowledgements and references

complete the paper.

II. ANALOGY OF SKID-STEERING WITH DIFFERENTIAL

DRIVE

Dynamic models for skid-steering may result too costly for

real-time motion control and dead-reckoning. Alternatively,

this section discusses geometric relationships that can be

used instead.

When differential drive is applied to control a pair of pure

rolling wheels, no slippage occurs and each tread’s contact is

limited to a single point. This assumption is usually adequate

for non-ideal wheels with a relatively small contact patch

(see Fig. 1.a). On the other hand, tracked vehicles with

differential drive epitomize skid-steering because of the large

contact area of both treads (see Fig 1.b). A similar case

is represented by wheeled skid-steering, where each side’s

tread consists of several contact patches that correspond to

mechanically linked wheels, as those within the dashed lines

in Fig 1.c-d.
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Fig. 1. Left and right treads on the plane for differential drive (a),
tracked vehicle (b), four-wheel skid-steer vehicle (c), and six-wheel skid-
steer vehicle (d).

The local frame of the vehicle is assumed to have its origin

on the center of the area defined by the left and right contact

surfaces on the plane, and its Y axis is aligned with the

forward motion direction. Skid-steer vehicles are governed

by two control inputs: the linear velocity of its left and right

treads with respect to the robot frame (Vl, Vr). Then, direct

kinematics on the plane can be stated as follows:⎛
⎝ vx

vy

ωz

⎞
⎠ = fd

(
Vl

Vr

)
(1)

where v = (vx, vy) is the vehicle’s translational velocity with

respect to its local frame, and ωz is its angular velocity.

When turning, the Instantaneous Center of Rotation (ICR)

of the vehicle on the motion plane is expressed in local

coordinates as ICRv = (xICRv, yICRv), as shown in Fig.

2. Besides, the ICRs for the left and right treads can be

defined in the local frame as ICRl = (xICRl, yICRl) and

ICRr = (xICRr, yICRr), respectively. These result from the

composition of the motion of the vehicle and that of linear

tread velocity (i.e., Vl or Vr). It is known [17] that ICRl

and ICRr lie on a line parallel to the local X axis that

also contains ICRv . Note that treads have the same angular

velocity ωz as the whole vehicle.
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Fig. 2. Vehicle and tread ICRs on the plane.

Thus, the geometrical relation between ICR positions

and the vehicle’s translational and rotational velocities is

expressed by:

xICRv =
−vy

ωz
(2)

xICRl =
αl ·Vl − vy

ωz
(3)

xICRr =
αr ·Vr − vy

ωz
(4)

yICRv = yICRl = yICRr =
vx

ωz
(5)

where the nominal tread speeds have been affected by

correction factors (αl, αr) to account for a number of fuzzy

mechanical issues such as tire inflation conditions or the

transmission belt tension.

The vehicle’s xICRv coordinate reaches infinite values

when ωz = 0 in (2). Conversely, boundedness is an important

property of tread ICR coordinates: In the proximity of

straight line motion, numerators and denominators in (3)-

(5) are infinitesimals of the same order, which result in

finite values for xICRl, xICRr and yICRv , respectively. It



must be noted that this boundedness is limited to the case

of kinematic motion, in which centrifugal dynamics are

neglected and slippage is due only to steering. Interestingly,

it has been demonstrated that in order to achieve stability

with fast motion (i.e., with some slippage contributed by

centrifugal forces), it must be guaranteed that yICRv is

bounded [13].

From Eqs.(2)-(5), the kinematic relation (1) can be ob-

tained as :

⎛
⎝ vx

vy

ωz

⎞
⎠ = A ·

(
Vl

Vr

)
(6)

where the elements of matrix A only depend on tread ICR

coordinates and correction factors:

A =
1

xICRr − xICRl
·
⎡
⎣ −yICRv ·αl yICRv ·αr

xICRr ·αl −xICRl ·αr

−αl αr

⎤
⎦ .

(7)

Note that in the case of an ideal symmetrical kinematic

model (i.e., ICRs lie symmetrically on the local X axis and

yICRv = 0), matrix A takes the following form:

A =
α

2xICR
·
⎡
⎣ 0 0

xICR xICR

−1 1

⎤
⎦ (8)

where α = αl = αr and xICR = −xICRl = xICRr.

Besides, this locomotion system introduces a non-

holonomic restriction in the motion plane because the non-

square matrix A has no inverse.

It must be noted that the above expressions also represent

kinematics for ideal wheeled differential drive vehicles, as

illustrated by Fig. 3. Therefore, for instantaneous motion,

kinematic equivalences can be considered between skid-steer

and ideal wheel vehicles.

The difference between both traction schemes is that

whereas ICRs for single ideal wheels are constant and

coincident with the ground contact points, tread ICRs are

dynamics-dependent and always lie outside of the tread

centerlines because of slippage. Thus, less slippage results

in tread ICRs that are closer to the vehicle.

Significantly, the center of mass of a vehicle affects tread

ICRs, as illustrated by Fig. 3. If it is closer to one side,

then that side’s wheels will slip less on account of pressure

and its ICR will be closer to the vehicle. Conversely, the

opposite tread ICR will be farther. Furthermore, the area of

the contact patch and its distribution also affect tread ICRs.

Thus, if the center of mass is closer to the front or rear

ends of the vehicle, pressure distribution concentrates onto a

portion of the tread contact surface, which results in closer

tread ICRs and a displacement of the yICRv coordinate. In

this sense, tire pressure also affects ICR positions. These

effects can be quantified by stating appropriate indexes.

A steering efficiency index χ of the vehicle can be defined

as the inverse of the normalized distance between the tread
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Fig. 3. Kinematic equivalence between the tread ICRs of a skid-steer
vehicle (a) and wheel contact points of an ideal differential drive vehicle
(b).

ICRs:

χ =
L

xICRr − xICRl
, (0 < χ ≤ 1) (9)

where L is the distance between tread centerlines. Index χ
is equal to 1 when no slippage occurs (i.e., ideal differential

drive). Besides, a normalized eccentricity index can be

defined as follows:

e =
xICRr + xICRl

xICRr − xICRl
(10)

which is equal to 0 when tread ICRs are symmetrical with

respect to the local Y axis.

The major consequence of the study above is that the effect

of vehicle dynamics is introduced in the kinematic model

just by two points in local coordinates: ICRl and ICRr.

These points are bounded variables for skid-steer vehicles

and coincide with wheel contact points for ideal differential

drive.

III. EXPERIMENTAL KINEMATICS IDENTIFICATION

A simple experiment, first proposed in [16], can be used to

derive a symmetric kinematic model. When equal opposite

tread speed control inputs Vr and Vl are issued, the vehicle

exhibits an approximately pure rotation about its Z-axis.

Then, the following equation can be applied:

xICR ≈
∫

Vrdt− ∫
Vldt

2 ·φ , (11)

where φ represents the actual rotated angle. Similarly, the

value α can be adjusted by measuring the actual traveled

distance d in straight motion:



α ≈ 2d∫
Vrdt +

∫
Vldt

. (12)

This simple procedure offers a kinematic solution that ac-

counts for wheel slippage. However, it does not contemplate

neither the asymmetric effects of the center of mass nor

mechanical misalignments.

Therefore, a more exhaustive experimental setup is pro-

posed in order to obtain the complete kinematic relation

expressed by (7). In this case, the parameter identification

method comprises two steps [17]. The first is to obtain

experimental data from both external and internal sensors.

Then, an optimization tool is employed to find the parameter

values that best fit the data. Optimization is required, since

actual tread ICR positions vary during navigation on account

of dynamics.

Genetic algorithms (GAs) are proposed as an appropriate

search method for this problem. This is a derivative-free

stochastic optimization tool, where each point in a solution

space is encoded into a bit string (chromosome) and is

associated with a fitness value. Starting from an initial

random population, points with better fitness values are used

to construct a new population of solutions by means of

genetic operators. Thus, after several iterations (generations),

the overall fitness value is improved.

GAs are useful for finding optimized values for the set

of kinematic parameters K = {xICRl, xICRr, yICRv, αr, αl}
from experimental data because no significant a priori knowl-

edge exists about them, it is straightforward to code them

as bit strings, and a fitness value can be assigned to new

solutions. Note that the number of parameters is one less

than the number of elements in matrix A.

Data collection experiments consist of several representa-

tive paths on a particular soil type, with diverse rotational

and translational speeds and accelerations. Data logged from

internal readings (e.g., shaft encoders or inertial sensors)

are needed to replay odometric estimations according to

alternative kinematic parameters. External sensor readings

(e.g., from a laser scanner or Differential GPS) occur at a

lower rate, and are necessary to accurately determine the

actual motion of the vehicle. Thus, training paths can be

broken into a number N of short segments according to the

external sensor rate. This way, each segment contains several

consecutive internal readings in order to estimate a kinematic

pose increment (Δx̂, Δŷ, Δφ̂) by integrating (6) with (7),

as well as an accurate motion increment (Δx, Δy, Δφ)
calculated from external readings. Fitness of the alternative

solutions evaluated by the GA can be assessed as the sum of

the squared odometric errors for the N recorded segments:

J(K) = (13)

N∑
i=1

(
(Δxi −Δx̂i)2 + (Δyi −Δŷi)2 + (Δφi −Δφ̂i)2

)
.

At each GA iteration, a set of solutions with better

overall errors is chosen for computing a new population with

the crossover and mutation operators. As a result, constant

kinematic parameters can be optimized off-line for a specific

robotic task, according to typical path motions, particular soil

types, and speed ranges.

IV. CASE STUDY: APPLICATION TO THE P3-AT ROBOT

A. The Pioneer P3-AT robot
The P3-AT has a 4-wheel drive skid-steer platform. It

measures approximately 0.5 m in length and is 0.25 m tall.

Tread length (i.e., the distance between the front and rear

wheels) is 0.27 m. Two different wheels sets are provided

by the manufacturer: Solid rubber tires of 19 cm diameter

(intended mainly for indoor use), and pneumatic tires of

22 cm diameter (see Fig. 4). The distance between longi-

tudinal tread centerlines is L = 0.4 m for both tire types.

The drive systems use reversible-DC motors equipped with

an optical quadrature shaft encoder. It has a maximum speed

of 1 wheel revolution per second. The robot weights 23.6 kg
and can carry a 35 kg payload. It can run over two hours on

three 12 V DC batteries.

Fig. 4. Two tire types for the robot.

Fig. 5. DGPS base (foreground right) and P3-AT robot (left).

The robot receives orders from a PC and sends operational

information under a built-in client-server architecture. Odo-

metric estimations are calculated from an implicit symmetric

kinematic model, which can be adjusted by the user through

a pair of integer parameters, namely Ticksmm and Revcount.



B. Kinematic parametrization

There are two alternative ways to implement approximate

kinematics of the P3-AT robot for motion control and dead-

reckoning. First, the server incorporates a symmetric model,

as in (8), that can be specified through the Ticksmm and

Revcount parameters. Secondly, an asymmetric model (7)

can be implemented on the client by directly processing tick

counts from the encoders. Both approaches are discussed

below.
1) Server model parametrization: The Ticksmm parameter

describes the number of encoder ticks per millimeter. It

depends on wheel radius r, expressed in millimeters, and

is affected by the correction factor α:

Ticksmm = round

(
α · r · 138

110

)
, (14)

where 138/110 is a constant value that depends on encoders

and transmission gears. Besides, Revcount represents the

number of ticks for a complete revolution of the robot turning

in place, which depends on slippage:

Revcount = round

(
2π ·xICR ·Ticksmm

8

)
, (15)

where the denominator scales the binary range of the integer.

The factory values for these parameters yield a default

symmetric kinematic model with α = 1 and xICR = 0.3 m
(assumed for the pneumatic tires). Note that a non-slip model

would have xICR = 0.2 m.
2) Client model implementation: The server does not pro-

vide the means to specify the complete asymmetric model, so

it has to be implemented on the client PC. Dead reckoning

can be computed as (6) with (7) by estimating Vr and Vl

from tick counts read from the server.

As for motion control, the client has to compute the driver

velocities (in mm/s) that are to be sent to the robot with

the setvel2(Vl, Vr) command. Control inputs can be obtained

from (3) and (4) as:

Vl =
vy + xICRl ·ωz

αl
(16)

Vr =
vy + xICRr ·ωz

αr
, (17)

where vx references cannot be directly addressed due to the

non-holonomic restriction of the locomotion system.

C. Experimental Identification

The P3-AT has been furnished with a 15.8 kg structure

that houses the onboard GPS systems as well as a laptop

computer (see Fig. 5). This structure has been considered

not to affect the center of gravity of the robot significantly.

The onboard Javad GPS receiver provides a precision under

1 cm by accepting RTCM/RTK differential corrections from

a nearby GPS base station at a rate of 5 Hz. The portable

computer acts as the client in the robotic architecture.

The experiments for kinematic identification have con-

sisted on several joystick controlled paths, where tick counts

pneumatic (50psi) pneumatic (20psi) solid rubber
yICRv -0.0080 -0.0120 -0.0120
xICRr 0.2998 0.3071 0.2588
xICRl -0.2758 -0.2553 -0.2667

αr 0.9253 0.9049 0.9128
αl 0.9464 0.9271 0.9047
χ 0.6949 0.7112 0.7612
e 0.0417 0.0921 -0.0150

TABLE I

ESTIMATED KINEMATIC PARAMETERS AND INDEXES FOR ASPHALT.

pneumatic (50psi) pneumatic (20psi) solid rubber
yICRv -0.0159 -0.0128 -0.0139
xICRr 0.2758 0.2899 0.2703
xICRl -0.2878 -0.2772 -0.2659

αr 0.9418 0.9183 0.9139
αl 0.9457 0.9222 0.9047
χ 0.7098 0.7053 0.7460
e -0.0213 0.0224 0.0082

TABLE II

ESTIMATED KINEMATIC PARAMETERS AND INDEXES FOR SMOOTH

CONCRETE.

have been recorded every 10 ms. Each parameter has been

coded as an 8 bit string, yielding 40 bit chromosomes for

the GA search. Tables I and II present kinematic parameters

obtained for asphalt and smooth concrete flat terrains, respec-

tively. In each case, three different wheel configurations have

been considered: pneumatic tires at 20 psi (nominal value)

and 50 psi (maximum pressure), and solid rubber. Steering

efficiency and eccentricity indexes have also been computed.

Independently of terrain and wheel configurations, yICRv

is always about 1 cm behind of the frame origin, which

confirms that it only depends on the center of mass. The

loss of thrust power while turning is greater in asphalt than

in concrete due to greater friction. This can be observed as

a lower steering efficiency value χ. In this sense, compact

wheels provide better efficiency than pneumatic tires (but less

traction). Note also that the α values are closer to 1 for 50 psi

than for 20 psi because the effective wheel radius is closer

to the nominal value. The results also show no significant

asymmetry with respect to the longitudinal axis Y , since the

eccentricity values are always very close to zero.

D. Dead-reckoning validation

Validation experiments have been carried out for the

six navigation conditions discussed above. Fig. 6 shows a

representative example path as estimated by three alternative

kinematic models: the default P3-AT symmetric model, an

experimental symmetrical model for asphalt and 20 psi

pneumatic tires (α = 0.91 and xICR = 0.275 m) obtained

from (11) and (12), and the corresponding optimized asym-

metric model. The ICR-based model clearly improves dead-

reckoning as compared with accurate path positions provided

by the DGPS. Mean squared performance values obtained

from all segments in the validation path are shown in Table

III.
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Fig. 6. Validation path for asphalt and 20 psi pneumatic tires.

Asymmetric P3-AT Symmetric
mean squared Δx error 0.00010 0.00183 0.00162
mean squared Δy error 0.00011 0.00468 0.00455
mean squared Δφ error 0.0359 0.0359 0.0359
mean squared J error 0.0361 0.0424 0.0421

TABLE III

MEAN PERFORMANCE VALUES FOR ALL SEGMENTS IN THE VALIDATION

PATH.

V. CONCLUSIONS

The paper proposes a method for improving real-time

motion control and dead-reckoning of wheeled skid-steer

vehicles without introducing the complexity of dynamics

computations in the loop. The method experimentally derives

an approximate kinematic model based on the boundedness

of the Instantaneous Centers of Rotation of both treads

on the motion plane. The model relates drive and vehicle

velocities by considering the effects of slippage. Moreover,

it incorporates fine-tuning parameters for misalignments and

other hidden mechanical inaccuracies.

The major contributions of the paper are the following:

• The geometric analogy with an ideal differential drive

model provides a physical interpretation to the coeffi-

cients of the kinematic matrix presented by [8].

• An easy to reproduce experimental method based on ex-

ternal sensor motion estimation and Genetic Algorithms

to identify an approximate kinematic model for wheeled

skid-steer vehicles.

• A kinematic analysis of the Pioneer P3-AT robot. Con-

figuration parameters of manufacturer’s implicit kine-

matic model have been related to the proposed method.

• Analysis of experimental dead reckoning results from

the application of the experimental model with different

wheel and terrain configurations.

For future work, it would be interesting to integrate this

enhanced kinematic model with inertial measurements for

irregular terrains.
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